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Abstract

We consider a principal agent project selection problem with asymmetric informa-
tion. There are N projects and the principal must select exactly one of them. Each
project provides some profit to the principal and some payoff to the agent and these are
agent’s private information. We consider the principal’s problem of finding an optimal
mechanism for two different objectives: maximizing expected profit and maximizing
the probability of choosing the most profitable project. Importantly, we assume par-
tial verifiability so that the agent cannot exaggerate the profits from any project to
the principal. Under this no-overselling constraint, we characterize the set of imple-
mentable mechanisms and find that in the case of two projects, the optimal mechanism
under both objectives takes the form of a cutoff mechanism. The simple structure of
the optimal mechanism also allows us to find evidence in support of the well-known
ally-principle which says that principal delegates more authority to an agent with more
aligned preferences.

1 Introduction

Suppose a principal has to choose exactly one of N available projects but does not know
how profitable they are. There is an agent who is fully informed about these profits but
also has its own preference over the projects. The principal would like to use the agent’s
information and choose a profitable project. Assuming the principal has commitment power
and cannot use transfers to incentivize the agent, we consider the problem of finding the
optimal mechanism for the principal in this project selection framework.
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Let’s first quickly consider the standard setting where the agent can lie arbitrarily. So
for any principal and agent payoff vectors (p, a) ∈ Θ, the agent can report any (π, α) ∈ Θ.
Consider any mechanism d and suppose its range is S ⊂ [N ]. Under this mechanism, the
agent will always report a (π, α) so that its favorite project in S defined by argmaxi∈Sai
is chosen. Thus, the principal can only fix a set S ⊂ [N ] and commit to choosing the
agent’s favorite project in S. This means that if the payoffs pi, ai are i.i.d. across projects,
all mechanisms lead to expected payoff E[pi] for the principal. And the probability of the
principal choosing the best project is 1

N
for any mechanism. Thus, the principal may as well

choose a constant mechanism and commitment power doesn’t buy anything for the principal.

An important assumption in the above setting is that the agent can lie arbitrarily. But
the agent’s ability to manipulate may be limited if it is required to support its claims with
some form of evidence. For instance, if a tech firm wants to a hire a programmer and the
hiring committee is biased towards candidates with better social skills, the firm can require
the hiring committee to provide certificates that support the reported coding skills of the
candidates. Now the hiring committee can still potentially hide certificates and understate
the coding ability of an applicant, but it cannot furnish fake certificates and overstate its
coding abilities. Thus, by requiring some kind of supporting evidence, the principal can
constraint the kind of manipulations that the agent can make.

In this paper, we consider a setting where the agent cannot oversell a project to the
principal. That is, the agent cannot say a project is more profitable for the principal than it
actually is. So if the true state is (p, a) ∈ Θ, the agent’s message space is M(p, a) = {(π, α) ∈
Θ : πi ≤ pi for all i}. Since the set of manipulations that the principal has to guard against
is now smaller, the class of truthful mechanisms is potentially bigger. Note that our mes-
sage correspondence satisfies the nested range condition (θ′ ∈ M(θ) =⇒ M(θ′) ⊂ M(θ))
from Green and Laffont [15] and thus, we can without loss of generality restrict attention to
truthful mechanisms.

Under the partial verifiability constraint of no overselling, we first characterize the class
of truthful mechanisms and call them table mechanisms. A table mechanism is defined by
an increasing set function which determines the set of projects on the table as a function
of the reported profit values π. The mechanism then chooses the agent’s favorite project
according to the reported α from those on the table. Thus, the class of truthful mechanisms
is now significantly bigger. We use this characterization to find the optimal mechanism for
the principal under two different objectives.

First, we consider the objective of maximizing the expected profit for the principal. For
the case of two projects, we show that the optimal table mechanism is a cutoff mechanism.
In this mechanism, one project is always on the table and the other project is on the table
if its reported profit meets a cutoff that depends on the bivariate distribution F from which
the principal and agent payoffs (pi, ai) are drawn for each project. When the payoffs are
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independent, this cutoff equals the expected profit. We also discuss the well-known ally
principle in our framework by considering the case where F is bivariate normal. In this
case, we find that the optimal cutoff is decreasing in the correlation between the principal
and agent payoffs and thus, the principal lends more leeway to an agent who shares their
preferences. For the case of N > 2 projects, focusing on the case of the uniform distribution,
we are able to show that a cutoff mechanism is nearly optimal. We do this by obtaining
an upper bound on the payoff of an arbitrary table mechanism and showing that the payoff
from the optimal cutoff mechanism is very close to the upper bound. Next, we also consider
the objective of maximizing the probability of choosing the best project. Again, for the case
of two projects, we show that a cutoff mechanism is optimal and when the project payoffs
are independent, the optimal cutoff equals the median of the principal’s profit.

1.1 Related literature

Mechanism design has often been used to deal with problems of asymmetric information (
Myerson [25], Myerson and Satterthwaite [26]). An important theme in the literature on
mechanism design is characterizing the set of implementable mechanisms (Gibbard et al.
[14], Satterthwaite [29], Dasgupta et al. [9], Green and Laffont [15]). In particular, Green
and Laffont [15] introduce the idea of partially verifiable information in mechanism design
and identify a necessary and sufficient condition, called the “Nested Range Condition”,
under which the set of implementable mechanisms coincides with the set of truthfully im-
plementable mechanisms (i.e. the revelation principle holds). Later research focuses on
identifying implementability conditions in other environments with partially verifiable infor-
mation; Kartik [19] looks at Nash implementation, Deneckere and Severinov [10] considers
lying with finite costs, Ben-Porath and Lipman [4] and Singh and Wittman [32] allow for
transfers, and Caragiannis et al. [7] considers probabilistic verification. Some computer sci-
entists have looked at the trade-off between monetary transfers and partial verifiability in
terms of implementing social choice functions (Ferraioli et al. [12], Fotakis et al. [13]). Our
setup belongs to the environment considered by Green and Laffont and satisfies their “Nested
Range Condition”. Thus, without loss of generality, we restrict attention to truthfully im-
plementable mechanisms in our analysis.

Our paper contributes to the literature finding optimal or efficient mechanisms in environ-
ments with a specific form of partial verifiability (Maggi and Rodriguez-Clare [22], Lacker
and Weinberg [21], Moore [23], Celik [8]). For instance, Munro et al. [24] argues using a
model in which only some expenditure can be hidden that spouses hiding income and assets
from one another is efficient. Deneckere and Severinov [11] explains the complicated selling
practices of real-world monopolists by considering an economy where some agents have lim-
ited ability to misrepresent their preferences. This paper considers the partial verifiability
constraint of no-overselling and potentially explains the use of cutoff mechanisms in settings
that only admit positive evidence which can be hidden but not fabricated.
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Our work also relates to the literature studying principal agent project selection problems
with different modeling assumptions (Ben-Porath et al. [2], Mylovanov and Zapechelnyuk
[27], Armstrong and Vickers [1] and ? ]). Ben-Porath et al. [2] and Mylovanov and Za-
pechelnyuk [27] consider a problem where the principal has to choose one of N agents who
prefer being chosen and provide some private value to the principal from being chosen. In
Ben-Porath et al. [2], the principal can verify his value from agent i at a cost ci, while
Mylovanov and Zapechelnyuk [27] assumes ex-post verifiability so that the principal can
penalize the winner by destroying a certain fraction of the surplus. Armstrong and Vickers
[1] considers a project delegation problem in which the principal can verify characteristics
of the chosen project but is uncertain about the set of available projects. These papers
find their respective optimal mechanisms for the principal and call them the favored agent
mechanism Ben-Porath et al. [2], shortlisting procedure Mylovanov and Zapechelnyuk [27],
and the threshold rule Armstrong and Vickers [1]. While these mechanisms have some flavor
of the cutoff mechanisms we obtain in this paper, there are important differences in the
setup we consider here. Primarily, in their setups, the principal is empowered by ex-post
verifiability of the reported values and the ability to use a prohibitively high punishment to
deter the agent from telling any lie, whereas in our setup, the agent is constrained in that he
cannot oversell, but the principal does not have the power to directly deter the agent from
underselling.

The paper proceeds as follows. In section 2, we present the model and definitions. Section
3 characterizes the class of truthful mechanisms. In section 4 and 5, we consider the two dif-
ferent objectives of maximizing expected profit and maximizing probability of choosing the
best project for the principal. In section 6, we give some remarks and Section 7 concludes.
The more technical proofs are in the appendix.

2 Model

There are two parties: a principal and an agent. The principal has a set of available
projects [N ] = {1, 2, . . . , N} and must choose one of them. Each project i leads to pay-
offs (pi, ai) ∈ X ⊂ R2 where pi denotes the profit for the principal and ai is the utility to
the agent. The payoffs (pi, ai) are i.i.d. from a bi-variate distribution F and this is all the
information that the principal has. The agent knows the true payoffs from all the projects
(p, a) ∈ Xn = Θ.

We assume that the principal can commit to a mechanism d : Θ → [N ] so that if the
agent reports payoffs (π, α) when the true state is (p, a), the project d(π, α) is chosen leading
to final payoffs pd(π,α), ad(π,α) for the principal and agent respectively.

As discussed earlier, if the agent can lie arbitrarily, the principal cannot do better than
by choosing a project at random. So we assume a natural partial verifiability constraint of
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no overselling under which the agent cannot report a project to be more profitable than it
actually is. Such a constraint on the message space may be inherent in the environment or
induced by the principal by requiring the agent to furnish some kind of evidence supporting
its claims. Formally, the agent’s state dependent message space takes the form:

M(p, a) = {(π, α) ∈ Θ : πi ≤ pi ∀i ∈ [N ]}

Since our message space satisfies the Nested Range condition of Green and Laffont [15],

θ′ ∈M(θ) =⇒ M(θ′) ⊂M(θ)

we can without loss of generality restrict attention to truthful mechanisms.

Definition 2.1. A mechanism d is truthful if for any (p, a) and (π, α) ∈M(p, a)

ad(p,a) ≥ ad(π,α).

We’ll consider the principal’s problem of finding the optimal truthful mechanism for two
different objectives:

• Maximizing the expected profit:

max
d:d is truthful

E[pd(p,a)]

• Maximizing the probability of choosing the best project:

max
d:d is truthful

P[d(p, a) ∈ argmaxipi]

First, we characterize the class of truthful mechanisms.

3 Characterization of truthful mechanisms

We begin by defining a special class of mechanisms which we call table mechanisms.

Definition 3.1. A mechanism d is a table mechanism if there exists a function f : Θ→ 2N

with the properties

• f(p, a) 6= φ

• f(p, a) = f (p, a′) = f(p)

• p ≤ p′ =⇒ f(p) ⊂ f (p′)

so that
d(p, a) ∈ arg max

i
{ai : i ∈ f(p)} .
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In words, a table mechanism is defined by an increasing set function that determines the
set of projects on the table and the mechanism always chooses the agent’s favorite project
among those on the table. The first condition says that there is a default project which is
always on the table. The second condition says that the set of projects on the table cannot
depend on the agent’s payoffs. The third condition is that the set of projects on the table
weakly increases as the profit vector increases.

Theorem 1. d is truthful if and only if it is a table mechanism.

It is fairly straightforward from the definitions to check that table mechanisms are truth-
ful. Indeed, under a table mechanism, the agent prefers reporting higher π’s to reporting
lower ones and, given any report of π’s, prefers reporting her payoffs to misreporting her
payoffs (since such a misrepresentation can only lead the principal to make a choice which
gives the agent a lower payoff.) The other direction is more involved.

Proof of Theorem 1. Suppose d is a table mechanism. Consider any profile (p, a). If the
agent reports some (π, α), we know that π ≤ p from the constraint (π, α) ∈ M(p, a). Since
f is increasing, it follows that f(π) ⊂ f(p). Since the agent gets his preferred project among
those available and reporting truthfully maximizes his set of available projects, the agent
cannot gain by misreporting. Therefore, d is truthful.

Now suppose that d is a truthful mechanism. Define the function f : Θ → 2N so that
i ∈ f(p, a) if and only if there exists some (p′, a′) ∈M(p, a) such that d(p′, a′) = i. First, we
will show that the function satisfies the three properties in the definition of table mechanism:

• Observe that (p, a) ∈ M(p, a) and thus, d(p, a) ∈ f(p, a) =⇒ f(p, a) 6= φ for any
(p, a) ∈ Θ

• The property that f does not depend on agent payoffs follows from observing that
M(p, a) = M(p, a′). Thus, if i ∈ f(p, a), i ∈ f(p, a′) and vice versa. Thus, we have
f(p, a) = f(p, a′) for any (p, a), (p, a′).

• Take any p, p′ such that p ≤ p′. Suppose i ∈ f(p) which implies that there exists
(π, α) ∈ M(p, a) with π ≤ p so that d(π, α) = i. But then, (π, α) ∈ M(p′, a) as well
and so i ∈ f(p′). Thus, we get that f(p) ⊂ f(p′).

Now we want to show that for any state (p, a), d(p, a) ∈ arg maxi {ai : i ∈ f(p)}
Suppose towards a contradiction that d(p, a) is not in this set. By definition, d(p, a) ∈

f(p). Let j ∈ arg maxi {ai : i ∈ f(p)}. Then aj > ad(p,a) and j ∈ f(p). But the fact that
j ∈ f(p) implies that there exists a (π, α) ∈ M(p, a) such that d(π, α) = j. But then, the
agent can misreport at state (p, a) to (π, α) and gain from this manipulation. This contradicts
the fact that d is truthful and so it must be that d(p, a) ∈ arg maxi {ai : i ∈ f(p)}. It follows
then that d is a table mechanism.
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For simplicity going forward, we will assume (without loss of generality) that N ∈ f(p)
for all (p, a) ∈ Θ. That is, in a table mechanism, project N is always on the table.

Before discussing the results, we define a subclass of table mechanisms that take a simple
cutoff form.

Definition 3.2. A mechanism d is a cutoff mechanism if it is a table mechanism and for
i = 1, . . . , N − 1, there exist cutoffs ci ∈ X, such that i ∈ f(p) if and only if pi ≥ ci.

In a cutoff mechanism, a project is on the table if the principal’s profit from the project
meets a threshold. That is, whether a project is on the table or not depends only on that
particular project’s profit value. The principal then chooses the agent’s favorite project
among those that meet the cutoff and the default project.

4 Maximizing expected profit

In this section, we consider the principal’s problem of finding the optimal table mechanism
d for maximizing expected profit E[pd(p,a)]. For the most part, we’ll consider and solve the
problem for the case of N = 2 projects. We’ll then discuss the case of N > 2 projects
towards the end of this section.

4.1 2 projects

In the case of two projects, we have (p1, a1) ∼ F and (p2, a2) ∼ F . In a table mechanism f
with 2 projects, we can assume without loss of generality that 2 ∈ f(p) for all p and so the
principal only really has to decide the set of vectors when 1 ∈ f(p).

Theorem 2. For two projects with (pi, ai) ∼ F , the optimal truthful mechanism is a cutoff
mechanism. The optimal cutoff c1 is defined by

E [(p1 − p2) Pr(a1 > a2|p2)|p1 = c1] = 0

Proof. Suppose d is truthful with associated function f . From Theorem 1, we know that d
is a table mechanism. So 2 ∈ f(p) for all p1, p2. Define c = sup{p1 : 1 /∈ f(p1, p1)}. Define
the cutoff mechanism d′ so that 1 ∈ f ′(p) ⇐⇒ p1 ≥ c. We’ll show that the expected profit
for the principal from d′ is at least as high as the expected profit from d. In fact, we will
show that this holds conditional on (p1, p2), and hence in expectation.

Consider the following (exhaustive and mutually exclusive) cases depending on whether
pi ≥ c or pi < c:

• p1 ∈ (−∞, c), p2 ∈ (−∞, c): For any such p1, p2, we know both f(p) = f ′(p) = {2} and
therefore, the second project is chosen for all such profiles. Thus, the two mechanisms
are identical and generate the same profit for the principal in this case.
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• p1 ∈ (∞, c), p2 ∈ [c,∞): In this case, f ′(p) = {2} and thus project 2 is chosen for sure.
Note that the principal prefers project 2 over 1 in these profiles and thus, the profit
from the cutoff mechanism is weakly higher for any such p1, p2.

• p1 ∈ [c,∞), p2 ∈ (−∞, c): Now f ′(p) = {1, 2} while f(p) can be either {2} or {1, 2}.
Observe that the principal strictly prefers project 1 over 2 in all these profiles. Thus,
the cutoff mechanism again leads to weakly higher profits for such p1, p2.

• p1 ∈ [c,∞), p2 ∈ [c,∞): Here we have f(p) = f ′(p) = {1, 2}. Thus, the two mecha-
nisms are identical in this set and lead to same profits for the principal.

This shows that for any truthful mechanism, there is a cutoff mechanism under which
the principal’s expected profit is weakly higher. Thus, the optimal truthful mechanism must
be a cutoff mechanism. Now our problem is just to find the optimal cutoff c.

Consider the decision problem of the principal for any given p1, p2, a1, a2. It can either

• not make project 1 available and get p2

• make project 1 available and get p1Ia1≥a2 + p2Ia2>a1
The constraint imposed by truthfulness and optimality of cutoff mechanisms imply that

the principal can only base this decision on the value of p1. Thus, taking expectation with
respect to p2, a1, a2, we get that the two alternatives are:

• not make project 1 available and get E[p2|p1]

• make project 1 available and get E [p1Ia1≥a2 + p2Ia2>a1|p1]

Thus, the principal would want to make project 1 available if and only if

E [p1Ia1≥a2 + p2Ia2>a1 |p1] ≥ E[p2|p1]
⇐⇒ E [p1Ia1≥a2|p1] ≥ E [p2Ia1≥a2|p1]
⇐⇒ E [(p1 − p2)Ia1≥a2|p1] ≥ 0

⇐⇒ E [(p1 − p2)P[a1 ≥ a2|p2]|p1] ≥ 0

At the optimal cutoff, the principal should be indifferent between the two alternatives
and so the cutoff c1 is defined by the solution to the equation

E [(p1 − p2)P[a1 ≥ a2|p2]|p1 = c1] = 0

In the special case where the principal and agent payoffs are independent, we get the
following corollary.

Corollary 1. Suppose F is such that the principal and agent payoffs (pi, ai) are independent.
Then the optimal cutoff is given by c1 = E[p1].
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4.2 Ally principle

In this subsection, we discuss the implications of our model for the well-known Ally prin-
ciple which states that a principal delegates more authority to an agent with more aligned
preferences. For this purpose, we assume that the principal agent payoffs for each project
is bivariate normal (pi, ai) ∼ N(0, 0, 1, 1, ρ) and are drawn i.i.d. across projects. Now the
question is whether we can say something systematic about c(ρ), the optimal cutoff as a
function of the correlation ρ.

Theorem 3. For N = 2 projects with (pi, ai) ∼ N(0, 0, 1, 1, ρ), the optimal cutoff is defined
by the equation

cΦ(tc) + tφ(tc) = 0

where t = ρ√
2−ρ2

. The optimal cutoff is decreasing in ρ.

The proof proceeds by applying the condition obtained in Theorem 2 for the case of
the bivariate normal distribution. Using formulas for integrals of normal cdfs from Owen
[28], we obtain the condition that the optimal cutoff must satisfy cΦ(tc) + tφ(tc) = 0 where
t = ρ√

2−ρ2
. We can then differentiate this equation and get that c′(0) < 0. The smoothness

of c and the fact that c′(t) is never zero implies that c′(t) < 0 for all t. The formal proof is
in the appendix.

Figure 1: The optimal cutoff for maximizing expected profit decreases as the correlation
between principal and agent payoffs increases.
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4.3 N projects

In this subsection, we discuss the case of N > 2 projects. Assume F is such that both
pi and ai are independent and uniform on [0, 1]. Under the independence assumption, the
principal’s problem can be written as:

maxfE

[∑
i∈f(p) pi

|f(p)|

]
where f : [0, 1]n → 2[n] must be such that

• it is never empty (f(p) 6= φ for any p)

• and it is increasing (p ≤ p′ =⇒ f(p) ⊂ f(p′)).

While we believe that a cutoff mechanism is optimal, we haven’t been able to exactly prove
it. Instead, we show that a cutoff mechanism is very close to being optimal by (i) obtaining
an upper bound on the expected payoff of any table mechanism and (ii) characterizing the
optimal cutoff mechanism and showing that the corresponding payoff for the principal is
close to the bound. We first characterize the optimal cutoff mechanism.

Theorem 4. For N projects and F uniform on [0, 1]2, the optimal cutoff mechanism has a
single cutoff c(N) that is defined by the equation N(1 − c)(1 − c + cN) = 1 − cN and takes
the form

c(N) = 1− 1√
N

+ o

(
1√
N

)
.

Moreover, the principal’s expected utility from the optimal cutoff mechanism is

VN = 1− 1√
N

+ o

(
1√
N

)
.

Note that since we are maximizing a continuous function over a compact space, a solution
exists. The rest of the proof proceeds in three steps. In step 1, we show that in any cutoff
mechanism which has a cutoff that is 0 or 1 cannot be optimal. That is, the solution must
be interior. In step 2, we show that a cutoff mechanism with different cutoffs cannot be
optimal. Finally, we maximize the principal’s utility with respect to the single cutoff c to
get the optimal cutoff mechanism. While it is hard to obtain an exact closed form solution
for the optimal single cutoff, and hence the expected payoff, we describe what they look like
asymptotically. The proof is relegated to the appendix.

Next, we obtain an upper bound on the expected payoff of any table mechanism. Suppose
the principal has to chose between n+ 1 projects and consider any table mechanism f . The
principal’s expected utility from this mechanism is

V (f) = E

(∑
i∈[n+1] 1(i ∈ f(p))pi∑
i∈[n+1] 1(i ∈ f(p))

)
.
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Theorem 5. Suppose there are N +1 projects and F uniform on [0, 1]2. There is a function
γ(N) ∈ o(1) such that for any table mechanism f ,

V (f) ≤ 1− 1 + γ(N)

8
√
N
·

Proof. To prove this, we first obtain the following bound on the principal’s expected utility.

Lemma 1. For any table mechanism f ,

V (f) ≤ E

(∑
i∈[n] 1(i ∈ f(p))pi + 1

2∑
i∈[n] 1(i ∈ f(p)) + 1

)
.

This bound follows from the fact that there must a project that is always on the table (as-
sume project n+ 1). We then split the objective, apply FKG inequality on the contribution
of project n+ 1, and bring the terms back together to get the bound.

Now, for any p, we have∑
i∈[n] 1(i ∈ f(p))pi + 1

2∑
i∈[n] 1(i ∈ f(p)) + 1

≤ max
S⊆[n]

∑
i∈S pi + 1

2

|S|+ 1
·

Thus,

V (f) ≤ E
(

max
S⊆[n]

∑
i∈S pi + 1

2

|S|+ 1

)
.

Now we obtain an upper bound on the right hand side.

Lemma 2. Let pi for i ∈ N be i.i.d. U [0, 1]. Define

Yn = max
S⊆[n]

∑
i∈S pi + 1

2

|S|+ 1
·

lim inf
n→∞

√
n(1− E(Yn)) ≥ 1

8
.

To prove this lemma, we will make heavy use of the following auxiliary random variables.
For ε > 0, define

Zn
1 (ε) =

{
i ∈ [n] : pi > 1− ε

n

}
,

and define

Zn
2 =

{
i ∈ [n] : pi ≥ 1− 1√

n

}
.

We show that it is often the case that Zn
1 is empty and |Zn

2 | is no bigger than 2
√
n.

Moreover, when Zn
1 is empty and |Zn

2 | is no bigger than 2
√
n, 1−Yn cannot be much smaller

than 1
4
√
n
.

Together, lemmas 1 and 2 complete the proof of Theorem 5.
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The payoff from the optimal cutoff mechanism and the upper bound on the payoff of any
arbitrary table mechanism imply that the cutoff mechanism is very close to being optimal.

5 Maximizing probability of best project

In this section, we consider the objective of maximizing the probability of choosing the best
project for the principal P[pd(p,a) ≥ pj for all j]. We’ll only focus on the case of N = 2
projects for this part.

5.1 2 projects

Let’s consider the case of two projects and table mechanisms with project 2 always on the
table.

Theorem 6. For two projects with (pi, ai) ∼ F , the optimal truthful mechanism is a cutoff
mechanism. The optimal cutoff c1 is defined by

E [(Ip1≥p2 − Ip2>p1)Ia1≥a2|p1 = c1] = 0

or more simply

P[p1 ≥ p2|p1 = c1, a1 ≥ a2] =
1

2

Proof. The argument for why cutoff is optimal is exactly the same as in the proof of Theorem
2. We now derive the optimal cutoff. The principal can either

• make project 1 available and get Ip1≥p2Ia1≥a2 + Ip2>p1Ia2>a1

• or not make it available and get Ip2>p1

Since the principal can only make the decision based on value of p1, it will chose to make
project 1 available if and only if

E[Ip1≥p2Ia1≥a2 + Ip2>p1Ia2>a1|p1] ≥ E[Ip2>p1|p1]
⇐⇒ E [(Ip1≥p2 − Ip2>p1)Ia1≥a2|p1] ≥ 0

At the cutoff, the principal must be indifferent between making or not making project 1
available. This gives the desired condition.

In the special case where the principal and agent payoffs are independent, we get the
following corollary.

Corollary 2. Suppose F is such that the principal and agent payoffs (pi, ai) are independent.
Then the optimal cutoff is given by c1 = Med[p1].
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5.2 Ally principle

Assume that the principal agent payoffs for each project is bivariate normal (pi, ai) ∼
N(0, 0, 1, 1, ρ) and are drawn i.i.d. across projects. Now the question is whether we can
say something systematic about c(ρ), the optimal cutoff as a function of the correlation ρ.

Theorem 7. For N = 2 projects with (pi, ai) ∼ N(0, 0, 1, 1, ρ), the optimal cutoff c(ρ) is
given by the equation

P[X ≤ c, Y ≤ tc]

P[Y ≤ tc]
=

1

2

where X, Y ∼ N(0, 0, 1, 1, t) and t =
ρ√

2− ρ2
.

Again, we use the definition of optimal cutoff from Theorem 6 and apply it to the
bivariate normal case. Then, using the integral formulas from Owen [28], we show that the

optimal cutoff in this case is defined by
P[X ≤ c, Y ≤ tc]

P[Y ≤ tc]
where X, Y ∼ N(0, 0, 1, 1, t) and

t =
ρ√

2− ρ2
. We haven’t been able to show that this result implies that the optimal cutoff

is decreasing in ρ, but the following contour plot from Python suggests that it is:

Figure 2: The optimal cutoff for maximizing probability of choosing better project as a
function of correlation (contour plot made in Python).

6 Remarks

1. Comparison of optimal mechanisms for the two objectives We wanted to see how
the optimal cutoffs for the two objectives compare when payoffs are bivariate normal. To
do so, we plotted the two optimal cutoff curves together and interestingly found that the
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curves coincide. While we haven’t been able to formally prove that the solutions coincide,
we conjecture that they do.

Conjecture 3. With N = 2 projects and payoffs (pi, ai) drawn iid from bivariate normal
N(0, 0, 1, 1, ρ), the optimal mechanism for maximizing principal’s expected profit and that
for maximizing probability of choosing better project is the same cutoff mechanism with
the cutoff c(ρ) defined by cΦ(tc) + tφ(tc) = 0 where t = ρ√

2−ρ2

2. Delegation interpretation of the optimal mechanism The simplest implementation
of the optimal cutoff mechanism has a nice delegation interpretation. The principal selects
a cutoff profit and a default project and delegates the project choice to the agent, in the
sense that the agent can select either the default project or a project which meets the cutoff
profit, and the principal signs off on the final decision. Under this delegation, the agent
chooses his favorite project among those that meet the cutoff and the default project.
Note in particular that this implementation only requires the agent to report information
about the chosen project. This is outcome-equivalent to the cutoff mechanism. We note
that many instances of “cutoff mechanisms” with flavors similar to ours have appeared in
the literature, but the optimality of such mechanisms has been driven by the assumption
of ex-post verifiability (Ben-Porath et al. [2], Mylovanov and Zapechelnyuk [27] Armstrong
and Vickers [1]). In particular, in most previous models the principal’s ability to punish
in the case of a misreport is tantamount to the assumption that the agent cannot lie.
Here, we offer an alternative way of rationalizing such cutoff mechanisms via the no-
overselling (or more generally, interim partial verifiability) constraint, which alters the
agents incentives but not by threatening the agent in the case of a misreport. To help
elucidate this point, we make the following observation. If our model were altered so that
the agent had an unconstrained message space, but the principal were required to take
the default project in case the agent should oversell any of the projects, then all of our
results would carry over.

7 Conclusion

We consider a principal agent project selection problem with asymmetric information. When
the agent can lie arbitrarily, we find that the principal cannot gain anything from commit-
ment power and may as well choose a project at random. In contrast, if the principal can
identify or induce partial verifiability in the environment so that the agent cannot over-
sell any of the projects, then a simple cutoff mechanism is optimal for the case of two
projects, both for maximizing expected profit and for maximizing probability of choosing
better project. In the particular case where payoffs are bivariate normal, we find that the
optimal cutoff is decreasing in the correlation between payoffs and thus, our model provides
evidence in favor of the ally principle which says that the principal grants more leeway to an
agent who shares its preferences. We conjecture that our results for the case of two project
extend to settings with more than two projects as well and provide some evidence towards it.
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A Proofs for Section 4 (Maximizing expected profit)

Theorem 3. For N = 2 projects with (pi, ai) ∼ N(0, 0, 1, 1, ρ), the optimal cutoff is defined
by the equation

cΦ(tc) + tφ(tc) = 0

where t = ρ√
2−ρ2

. The optimal cutoff is decreasing in ρ.

Proof. We know that the optimal cutoff c(ρ) is the solution to the following equation

E [(p1 − p2)P[a1 ≥ a2|p2]|p1 = c(ρ)] = 0

Let us simplify the above expression. First, we want to find P[a1 ≥ a2|p1, p2]. We know
that if X, Y ∼ N(µx, µy, σ

2
x, σ

2
y, ρ), then the conditional distribution

X | Y ∼ N

(
µx + ρ

σx
σy

(y − µy) , σ2
x(1− ρ2)

)
and so in our case, ai|pi ∼ N(ρpi, 1 − ρ2). Also, since the payoffs are independent across
projects, we get that

a1 − a2|p1, p2 ∼ N(ρ(p1 − p2), 2(1− ρ2))

Using this, we get that

P[a1 − a2 ≥ 0|p1, p2] = Φ

(
ρ(p1 − p2)√

2(1− ρ2)

)

where Φ is the standard normal cdf.
Plugging this into the equation, we get that the optimal cutoff satisfies

E

[
(p1 − p2)Φ

(
ρ(p1 − p2)√

2(1− ρ2)

)∣∣∣∣∣p1 = c(ρ)

]
= 0

We can find that the expectation is equal to

p1Φ

(
ρp1√
2− ρ2

)
+

ρ√
2− ρ2

φ

(
ρp1√
2− ρ2

)

and letting t =
ρ√

2− ρ2
, we have that the optimal cutoff c is implicitly defined by

cΦ(tc) + tφ(tc) = 0

where Φ and φ represent the standard normal cdf and pdf respectively. Observe that t ∈
[−1, 1] and is increasing in ρ.
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Now letting F (c, t) = cΦ(tc) + tφ(tc), we can use the implicit function theorem to get
that

c′(t) = −Ft
Fc

= −c
2φ(tc) + φ(tc)− t2c2φ(tc)

Φ(tc) + tcφ(tc)− t3cφ(tc)

= − φ(tc) (1 + c2(1− t2))
Φ(tc) + tcφ(tc)(1− t2)

= −φ(tc) (1 + c2(1− t2))
Φ(tc) (1− c2(1− t2))

Note that c(0) = 0 and so c′(0) = −2φ(0) < 0. Also observe from the above expression
that c′(t) is never 0 and so it follows from the smoothness of c that c′(t) < 0 for all t ∈ (−1, 1).
Thus, we have that the optimal cutoff is decreasing in ρ.

Theorem 4. For N projects and F uniform on [0, 1]2, the optimal cutoff mechanism has a
single cutoff c(N) that is defined by the equation N(1 − c)(1 − c + cN) = 1 − cN and takes
the form

c(N) = 1− 1√
N

+ o

(
1√
N

)
.

Moreover, the principal’s expected utility from the optimal cutoff mechanism is

VN = 1− 1√
N

+ o

(
1√
N

)
.

Proof. For any arbitrary cutoff mechanism with cutoffs c = (c1, c2...cN−1), we compute the
expected utility of the principal. For the below expressions, consider cN = 0.

EUp(c) =
N∑
i=1

(1 + ci)

2
P(d = i)

Note that P(d = i) = (1 − ci)P(d = N |ci = 0). That is, conditional on pi ≥ ci, the
probability that the decision is i is the same as the probability that the decision is N when
the cutoff ci = 0 and the remaining cutoffs are the same. To find the probability that the
last project N is chosen, we condition on its rank which is defined in terms of ais. That is,
the rank of N is k if there are exactly k − 1 projects with higher ais.

P(d = N) =
N∑
k=1

P(rank of N = k)P(d = N | rank of N = k)
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=
1

N

N∑
k=1

P(d = N | rank of N = k)

=
1

N

N∑
k=1

∑
S⊂[N−1]:|S|=k−1

Πi∈Sci(
N−1
k−1

)

We first argue that cutoffs have to be interior in the optimal cutoff mechanism. Suppose
d is a cutoff mechanism with cutoffs c = (c1, c2...cN−1) and ci = 1. In this case, let u∗ denote
the expected utility of the principal. Note that u∗ < 1. Define a new cutoff mechanism
in which all cutoffs remain the same except for i which now has the cutoff u∗. Now, with
probability u∗, the principal gets u∗ and with probability 1− u∗, the principal gets a convex
combination of u∗ and 1+u∗

2
> u∗. This means that his expected payoff under the new mech-

anism is > u∗. Therefore, an optimal mechanism cannot have the cutoff 1. Now, suppose
there is an i ∈ [N − 1] which has a cutoff of 0. Observe that the expected utility from any
arbitrary project conditional on being chosen is 1+c

2
≥ 0.5. Now, consider increasing the

cutoff to ci = 1
2

in the new mechanism while keeping every other cutoff the same. For every
pi <

1
2
, under the old mechanism, the principal’s payoff was some convex combination of

pi and some k ≥ 1/2. Under the new mechanism, it is just k > pi. For pi ≥ 1
2
, the new

mechanism is identical to the old one. Therefore, an optimal mechanism cannot have a cutoff
of 0. Thus, we know that in the optimal cutoff mechanism, ci /∈ {0, 1} for any i ∈ [N − 1].

Now suppose that the mechanism d is such that there exist i, j with ci > cj. Define t so
that c̄+ t = ci and c̄− t = cj. From the above calculations, we know that if we write EUp(c)
in expanded form and plug in ci = c̄+ t and cj = c̄− t, we get a polynomial that is at most
cubic in t. This is because we get a term that is at most quadratic in t for P(d = k) for any
k ∈ [n] and in the expected utility calculation, we multiply that with 1+ck

2
. Note that by the

symmetry of the projects, the principal should get the same expected utility if we changed
t to −t. Therefore, the polynomial should be of the form at2 + b. Now, if a is > 0 or < 0,
the principal gains from increasing or decreasing t which is possible since we know that the
solution is interior and ci > cj. Therefore, d cannot be optimal in either case. When a = 0,
the principal is indifferent to increasing t till one of the cutoffs reaches an extreme of 1 or
0 which we know cannot be optimal. Therefore, a cutoff mechanism with different cutoffs
cannot be optimal.

The above discussion implies that the solution to the optimization problem has to be a
single cutoff mechanism. Let c be the single cutoff. Using the above calculations, we have
that

P(d = N) =
1

N

N∑
k=1

∑
S⊂[N−1]:|S|=k−1

Πi∈Sci(
N−1
k−1

)
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=
1

N

N∑
k=1

ck−1

=
1

N

1− cN

1− c

Therefore,

EUp(c) =
1

2
P(d = N) +

1 + c

2
P(d 6= N)

=
1

2
+
c

2

(
1− 1− cN

N(1− c)

)

Differentiating with respect to c gives the desired optimal cutoff mechanism defined by
single cutoff c(N).

∂EUp(c)

∂c
=

1

2

(
1− 1− cN

N(1− c)

)
− c

2N

(
(1− c)(−NcN−1) + (1− cN)

(1− c)2

)
=

1

2
+

cN

2(1− c)
− 1− cN

2N(1− c)2

Setting it equal to zero gives us:

N(1− c)(1− c+ cN) = 1− cN

Let

φN(c) = N(1− c)(1− c+ cN)− (1− cN).

Then for any α > 0,

lim
N→∞

φN

(
1− α√

N

)
= α2 − 1,

and so for all sufficiently large N , the quantity

φN

(
1− α√

N

)
is positive if and only if α > 1 and negative if and only if α < 1. Hence, for any ε > 0, it
follows that the unique root c(N) of the equation from Theorem 4 satisfies

(1− ε) 1√
N
≤ 1− c(N) ≤ (1 + ε)

1√
N

21



for all sufficiently large N , so

lim
N→∞

√
N(1− c(N)) = 1.

Plugging in the expected utility expression gives us the maximum utility of the principal
in the class of cutoff mechanisms: VN = 1

2
+ c(N)

2
(c(N)− c(N)N). It follows that

2
√
N(1− VN) =

√
N(1− c(N)2 + c(N)N+1)

=
√
N(1− c(N)) · (1 + c(N)) +

√
Nc(N)N+1.

As shown above,
√
N(1 − c(N)) → 1 and hence also (1 + c(N)) → 2. Further, for N

sufficiently large, c(N) ≤ 1− 1
2
√
N
≤ e

− 1

2
√
N , so

√
Nc(N)N+1 ≤

√
Nc(N)N ≤

√
Ne−

√
N
2 → 0.

Thus,

lim
N→∞

√
N(1− VN) = 1.

Lemma 1. For any table mechanism f ,

V (f) ≤ E

(∑
i∈[n] 1(i ∈ f(p))pi + 1

2∑
i∈[n] 1(i ∈ f(p)) + 1

)
.

Proof. Note that since n+ 1 ∈ f(p) for all p,

V (f) = E

(∑
i∈[n] 1(i ∈ f(p))pi + pn+1∑

i∈[n] 1(i ∈ f(p)) + 1

)

= E

( ∑
i∈[n] 1(i ∈ f(p))pi∑
i∈[n] 1(i ∈ f(p)) + 1

)
+ E

(
pn+1∑

i∈[n] 1(i ∈ f(p)) + 1

)
.

Now, since pn+1 and
∑

i∈[n] 1(i ∈ f(p)) + 1 are both increasing, FKG implies

E

(
pn+1∑

i∈[n] 1(i ∈ f(p)) + 1

)
≤ E(pn+1) · E

(
1∑

i∈[n] 1(i ∈ f(p)) + 1

)

=
1

2
· E

(
1∑

i∈[n] 1(i ∈ f(p)) + 1

)

= E

(
1
2∑

i∈[n] 1(i ∈ f(p)) + 1

)
.
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Thus,

V (f) ≤ E

( ∑
i∈[n] 1(i ∈ f(p))pi∑
i∈[n] 1(i ∈ f(p)) + 1

)
+ E

(
1
2∑

i∈[n] 1(i ∈ f(p)) + 1

)

= E

(∑
i∈[n] 1(i ∈ f(p))pi + 1

2∑
i∈[n] 1(i ∈ f(p)) + 1

)
.

Lemma 2. Let pi for i ∈ N be i.i.d. U [0, 1]. Define

Yn = max
S⊆[n]

∑
i∈S pi + 1

2

|S|+ 1
·

lim inf
n→∞

√
n(1− E(Yn)) ≥ 1

8
.

Proof. We need to show that for any ε > 0,
√
n(1− E(Yn)) ≥ 1

8
− ε for all sufficiently large

n. To prove this lemma, we will make heavy use of the following auxiliary random variables.
For ε > 0, define

Zn
1 (ε) =

{
i ∈ [n] : pi > 1− ε

n

}
,

and define

Zn
2 =

{
i ∈ [n] : pi ≥ 1− 1√

n

}
.

To begin, observe that for small ε, Zn
1 (ε) is very likely to be empty. Formally, we have that

for any ε ∈ (0, 1),

P(|Zn
1 (ε)| = 0) ≥ 1− 2ε

for all n sufficiently large. This is because

P
(
pi ≤ 1− ε

n
∀i ∈ [n]

)
=
(

1− ε

n

)n
→ e−ε,

and so it follows that for n sufficiently large that

P(|Zn
1 (ε)| = 0) ≥ (1− ε)e−ε ≥ (1− ε)2 ≥ 1− 2ε.

Next we note that |Zn
2 | is often no bigger than 2

√
n. Formally,

P(|Zn
2 | ≤ 2

√
n) ≥ 1

2
·
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This is because

E(|Zn
2 |) =

∑
i∈[n]

P
(
pi ≥ 1− 1√

n

)
= n · 1√

n
=
√
n,

so by Markov’s inequality,

P(|Zn
2 | > 2

√
n) ≤

√
n

2
√
n

=
1

2
.

Consequently, it is often the case that Zn
1 is empty and |Zn

2 | is no bigger than 2
√
n.

Using the union bound, we have

P(|Zn
1 (ε)| = 0, |Zn

2 | ≤ 2
√
n) ≥ P(|Zn

1 (ε)| = 0) + P(|Zn
2 | ≤ 2

√
n)− 1,

and so it follows from above that

P(|Zn
1 (ε)| = 0, |Zn

2 | ≤ 2
√
n) ≥ [1− 2ε] +

1

2
− 1 =

1

2
− 2ε

for all n sufficiently large.
Moreover, when Zn

1 is empty and |Zn
2 | is no bigger than 2

√
n, 1 − Yn cannot be much

smaller than 1
4
√
n
:

Lemma 3. For every ε ∈ (0, 1) there is some N(ε) such that if n > N(ε), |Zn
1 (ε)| = 0, and

|Zn
2 | ≤ 2

√
n, then

Yn ≤ 1− 1− ε
4
√
n
·

Proof of Lemma 3. Fix ε ∈ (0, 1), take N(ε) to be the largest N such that

min

(
2
√
N

b2
√
Nc+ 1

,
N

N + 1

(
1− 3

2
√
N

+
2ε

N

))
< 1− ε,

and assume n > N(ε).
Let

V =

{
i ∈ [n] : pi ≤ 1− 1√

n

}
and W = [n] \ V . Then for any S ⊆ [n],

∑
i∈S pi + 1

2

|S|+ 1
=

∑
i∈S∩V pi +

∑
i∈S∩W pi + 1

2

|S|+ 1
≤
|S ∩ V |

(
1− 1√

n

)
+ |S ∩W |

(
1− ε

n

)
+ 1

2

|S|+ 1
·
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Thus,

Yn ≤ max
S⊆[n]

|S ∩ V |
(

1− 1√
n

)
+ |S ∩W |

(
1− ε

n

)
+ 1

2

|S|+ 1

= max
a≤|V |, b≤|W |

a
(

1− 1√
n

)
+ b
(
1− ε

n

)
+ 1

2

a+ b+ 1

= max
a≤|V |

a
(

1− 1√
n

)
+ |W |

(
1− ε

n

)
+ 1

2

a+ |W |+ 1

= max

 |W | (1− ε
n

)
+ 1

2

|W |+ 1
,
|V |
(

1− 1√
n

)
+ |W |

(
1− ε

n

)
+ 1

2

|V |+ |W |+ 1

.
Now, since |W | ≤ b2

√
nc and n > N(ε),

|W |
(
1− ε

n

)
+ 1

2

|W |+ 1
≤
b2
√
nc
(
1− ε

n

)
+ 1

2

b2
√
nc+ 1

≤
b2
√
nc+ 1

2

b2
√
nc+ 1

= 1− 2
√
n

b2
√
nc+ 1

· 1

4
√
n
≤ 1− 1− ε

4
√
n

and

|V |
(

1− 1√
n

)
+ |W |

(
1− ε

n

)
+ 1

2

|V |+ |W |+ 1
=

(n− |W |)
(

1− 1√
n

)
+ |W |

(
1− ε

n

)
+ 1

2

n+ 1

≤
(n− 2

√
n)
(

1− 1√
n

)
+ 2
√
n
(
1− ε

n

)
+ 1

2

n+ 1

= 1−
[

n

n+ 1

(
1− 3

2
√
n

+
2ε

n

)]
· 1√

n

≤ 1− 1− ε√
n

< 1− 1− ε
4
√
n
·

Hence, Yn ≤ 1− 1−ε
4
√
n
.

Using these observations, the proof of lemma 2 follows easily.
Fix ε ∈ (0, 1), and denote

pn = P(|Zn
1 (ε)| = 0, |Zn

2 | ≤ 2
√
n)

and

yn = E(Yn | |Zn
1 (ε)| = 0, |Zn

2 | ≤ 2
√
n).
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For any sufficiently large n, we know from above that pn ≥ 1
2
− 2ε, and yn ≤ 1− 1−ε

4
√
n

since

Yn ≤ 1− 1−ε
4
√
n

whenever that |Zn
1 | = 0 and Zn

2 ≤ 2
√
n by Lemma 3. Hence, for all sufficiently

large n,

E(Yn) ≤ pn · yn + (1− pn) · 1
= 1− pn · (1− yn)

≤ 1−
(

1

2
− 2ε

)
·
(

1− ε
4
√
n

)
≤ 1− 1

8
√
n

+
ε√
n
·

and thus

√
n(1− E(Yn)) ≥ 1

8
− ε.

B Proofs for Section 5 (Maximizing probability of best

project)

Theorem 7. For N = 2 projects with (pi, ai) ∼ N(0, 0, 1, 1, ρ), the optimal cutoff c(ρ) is
given by the equation

P[X ≤ c, Y ≤ tc]

P[Y ≤ tc]
=

1

2

where X, Y ∼ N(0, 0, 1, 1, t) and t =
ρ√

2− ρ2
.

Proof. Given the distributional form, we have

a1 − a2|p1 ∼ N(ρp1, 2− ρ2)

and therefore,

p2|a1 − a2, p1 ∼ N

(
ρ2p1 − ρ(a1 − a2)

2− ρ2
,
2(1− ρ2)

2− ρ2

)
This gives

P [p2 ≤ p1|p1, a1 − a2] = Φ

(
2p1(1− ρ2) + ρ(a1 − a2)√

2(1− ρ2)(2− ρ2)

)
Then,

P[p2 ≤ p1|p1, a1 ≥ a2] =
1

P[a1 ≥ a2|p1]

∫ ∞
0

P[p2 ≤ p1|p1, a1 − a2 = x]f(a1 − a2 = x|p1)dx
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=
1

Φ

(
ρp1√
2− ρ2

) ∫ ∞
0

Φ

(
2p1(1− ρ2) + ρx√
2(1− ρ2)(2− ρ2)

)
e
− 1

2

(
x−ρp1√
2−ρ2

)2

√
2− ρ2

√
2π
dx

=
1

Φ

(
ρp1√
2− ρ2

) ∫ ∞
−ρp1√
2−ρ2

Φ

(
2p1(1− ρ2) + ρ(t

√
2− ρ2 + ρp1)√

2(1− ρ2)(2− ρ2)

)
φ(t)dt

=
1

Φ

(
ρp1√
2− ρ2

) ∫ ∞
−ρp1√
2−ρ2

Φ

(
p1
√

2− ρ2 + ρt√
2(1− ρ2)

)
φ(t)dt

= E

[
Φ

(
p1
√

2− ρ2 + ρt√
2(1− ρ2)

)∣∣∣∣t ≥ −p1ρ√
2− ρ2

]

Observe that if f(p1, ρ) is the above expectation, then we have f(p1, ρ)+f(−p1,−ρ) = 1.
Thus, we can conclude that c(−ρ) = −c(ρ) for all ρ ∈ [0, 1]. So let’s focus on ρ > 0 and try
to argue that the optimal cutoff must be decreasing in ρ.

The expectation above equals

P[X ≤ p1, Y ≤ tp1]

P[Y ≤ tp1]

where X, Y ∼ N(0, 0, 1, 1, t) and t =
ρ√

2− ρ2
and this completes the proof.
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