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Abstract. This paper explores the dynamics of social learning
within the herding model framework. We examine the efficacy
of regulatory interventions, specifically focusing on garbling or re-
stricting agents’ private information. Two regulator types, adap-
tive and static, are considered. Surprisingly, both regulators prove
equally powerful in maximizing agents’ asymptotic welfare. The
findings imply that regulators need not actively monitor real-time
actions for optimal outcomes; committing to predefined informa-
tion garbling suffices. We provide a precise characterization of
asymptotic welfare in the presence of the regulator, establishing
an upper bound for asymptotic welfare in the standard herding
model. Finally, we demonstrate that a gap exists between static
and adaptive regulators when the regulator aims to maximize the
herding probability on one of the actions.

A notable classic example in social learning illustrates that rational
agents may fail to aggregate information. Specifically, in the celebrated
herding model [6, 5, 13], agents sequentially take actions based on their
private information and the history of predecessors’ actions. The (hy-
pothetical) aggregation of all the private information of all agents de-
termines the state of the world with probability one. Nevertheless, the
agents may herd on inferior action with positive probability. This inef-
ficiency of social learning naturally raises the question: Can regulation
alleviate the inefficiency?

Different forms of regulations might be considered in the context of
social learning (see Section for a discussion of various types of reg-
ulations that have been considered in the literature). In this paper,
we focus on a regulation that takes a simple form of restricting (i.e.,
garbling) the private information of agents. Notice that such a non-
monetary intervention requires minimalistic assumptions on the abili-
ties of the regulator. In particular, the regulator may have no access
to the private information of the agents. Moreover, communication
with the agents is not required. Instead, the regulator may restrict
the private information of an agent by imposing some filters on the in-
formation sources of individuals. At the micro level, the restriction of
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the information can only damage an individual. However, at the macro
level, we will see that a careful choice of garblings might benefit society
and cause herding on the superior action with a higher probability.

We consider the canonical herding model: Agents are trying to guess
the correct binary state θ ∈ {0, 1} sequentially and are exposed to
private signals that are drawn i.i.d conditional on the state. A regulator
who plays the role of an information designer in our model generates
a garbling of these private signals. We mainly focus on two types
of regulators. The first is the adaptive regulator who has access to
the public information (i.e., the actions of the agents). The adaptive
regulator has the flexibility to design the garbling at time t as a function
of the actions up to time t. The second is the static regulator who is less
powerful than the adaptive one. She commits to the entire sequence of
garbling before the interaction starts.

Our main result focuses on a regulator who is trying to maximize
the asymptotic welfare of the agents; namely, she is trying to maximize
the probability of a herd on the correct action. Surprisingly, we show
that both the static and the adaptive regulators are equally powerful.
Moreover, we provide a clean formula for the asymptotic welfare of the
agents. The existence of such a clean formula for the best social wel-
fare is somewhat surprising given the fact that in the standard model
without garbling, no such formula exists.

The implications of this result are twofold. First, it shows that in
order to maximize the asymptotic welfare of the society, the regulator
does not need to monitor the agents’ actions, and it can do as well
by committing in advance to a revelation policy. Secondly, the welfare
characterization presented in our results establishes a non-trivial up-
per bound for the asymptotic welfare in the standard herding model
without the presence of a regulator.

Our second result considers a regulator with transparent motives
that is instead interested in maximizing the probability of the society
to asymptotically herd on one of the two actions (say action 1). In
contrast to the previous result, we demonstrate a gap between the
two monitoring models and show that the regulator cannot achieve the
same utility if it is uninformed of the history. A closed-form expression
for the optimal guarantees of the adaptive regulator is provided.

Related Literature. The conventional herding model offers profound
insights into the dynamics of social learning. [6] and [5] demonstrate
that even rational individuals, whose pooled private information is suf-
ficient for identifying the optimal action, may collectively opt for a
suboptimal alternative. Specifically, they illustrate the occurrence of
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information cascades, wherein agents, starting from a specific time pe-
riod, disregard their private signals and base their decisions solely on
the historical choices of others. This may lead to failure of asymp-
totic learning where the probability of selecting the optimal action
approaches one with time. In contrast, Smith and Sorensen [13] show
that when signals have unbounded precision, then asymptotic learning
holds.

Interfering in the social learning process to optimize the social out-
come has been studied by [1], [3], [12]. These works focus on the
observation structures where agents observe only a partial subset of
their predecessors. We take an orthogonal perspective and focus on
the private information of the agents. We restrict attention to the ob-
servation structure where the agents observe the actions taken by all
past agents but we believe that this assumption can be substantially
relaxed.

Smith, Sorensen, and Tian [14] study the problem of a social planner
who is designing the optimal decision rule for agents to maximize the
discounted stream of utilities. Specifically, the social planner has the
power to choose a map from private signals to action recommendations,
to maximize the discounted sum of the agents’ payoffs. They provide
comparative statics over the cascading region in the optimum as a
function of the discount factor. In contrast to our work, the optimal
decision rule ignores informational externalities, and thus agents are
not selfish and do not optimize their payoff given their information.

Our work is also related to the intersection of the herding litera-
ture with Bayesian persuasion [8]. An example of such integration is
found in the related paper by [10], who studies the classic binary-action
herding model with a designer that can dynamically send information
to the agents in addition to their private signals. As in the second
part of our analysis, the sender would like to maximize the probabil-
ity that the population herds on Action H. The main result derives
conditions under which the designer prefers observational learning and
under which she prefers to induce a herd from the start. In another
paper, [2] considered a herding model with a designer that can choose
the agents’ private conditional i.i.d. signal. The state space is binary,
but the agents and the designer have general utility functions. The
designer chooses an information structure to maximize her utility in
the asymptotic action that the agents play. The main result identifies
necessary and sufficient conditions under which the designer’s utility is
equal to the maximal possible achieved utility obtained in the Bayesian
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persuasion model. In contrast with the aforementioned works our de-
signer who is represented by the regulator, cannot generate information
and can only garble the agents’ given private information.

Finally, as mentioned above, our characterization provides a non-
trivial upper bound on the agents’ asymptotic welfare in the herding
model as a function of their private beliefs distribution. The only
known non-trivial lower bound on the asymptotic welfare, which is also
valid for a large class of random social networks (see [9]), is obtained by
considering the boundary of the support of the private belief regions.

1. Model

The canonical herding model considers an unknown binary state θ ∈
{0, 1}. We identify beliefs about θ with real numbers in [0, 1] that
indicate the probability of θ = 1. The common prior is denoted by
π ∈ [0, 1]. Every agent t = 1, 2, ... observes a private signal about
the state. The distribution of posteriors conditional at state θ = 0, 1
is denoted by F0, F1 ∈ ∆([0, 1]). The unconditional distribution of
posteriors is denoted by F = πF1 + (1− π)F0. By the splitting lemma
(see [4]) E[F ] = π and every F with expectation π can be induced by
some signaling structure.

1.1. Garbling. The regulator is allowed to garble the private signal
F of agent t; i.e., to cause agent t to be exposed to a less informative
signal in the Blackwell sense. Concretely, the regulator can choose
a distribution Gt ⪯ F where ⪯ denotes the second-order stochastic
dominance order. The set of all possible garblings is denoted by G =
{G : G ⪯ F}. The following types of regulators will be considered.

• The adaptive regulator commits to a regulation policy that is a
mapping r : H ! G, where H is the set of all possible (publi-
cally observed) histories of actions; namely, H is simply the set
of all finite 0/1 sequences.

• The static regulator sets the sequence r = (G1, G2, G3, ...) be-
fore the interaction.

The agents are rational and are aware of the regulation policy. In
particular, they know how the information of their predecessors was
garbled and hence can deduce a posterior from the publicly observed
sequence of past actions.

1.2. The Interaction. All agents have binary actions a = 0, 1 and
the same utility function, u(a, θ) = 1[a = θ]. Agents t = 1, 2, ...
sequentially observe a private signal ω ∼ Gt (the garbled signal by the
regulator), they observe the strategy of the regulator as well as the
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history of play (a1, ..., at−1), and take an expected utility maximizing
action at ∈ {0, 1}.

Given a garbling policy r (either adaptive or static) we denote by
BNE(r) the set of Bayesian Nash equilibria of the above interaction.1

2. Welfare maximizing regulator

For clarity of presentation, we restrict attention to the case where
the common prior is π = 1

2
. This assumption is not crucial, and our

results can be easily generalized for an arbitrary π ∈ [0, 1].
In this section, we consider a regulator whose goal is to maximize

the asymptotic social welfare; namely, to maximize the probability that
the herd will be on the correct action.

Formally, given r, we evaluate the welfare performance for an equilib-
rium E ∈ BNE(r) by W (E) = limt!∞ P[at = θ].2 We evaluate the per-
formance of r by the worst-case equilibrium W (r) = infE∈BNE(r) W (E).
Our goal is to find a regulation policy r with the best performance.
For the classes of adaptive and static regulation policies, we denote
by Wadap and Wstat the expression supr W (r), where the supremum is
taken over the adaptive/ static regulation policies correspondingly.

The optimal social welfare that can be induced by garbling (in the
adaptive and the static case) can be expressed by the notion of infor-
mation width that is defined below.

2.1. Width. As we will see, binary garblings (i.e., garblings that sat-
isfy | supp(Gt)| = 2) play a central role in our model. Among the
binary-garblings we would like to focus on the class of the most infor-
mative; i.e., the Parto frontier of the binary-garblings with respect to
the Blackwell order. Those most informative garblings take a threshold
form. For every q ∈ [0, 1] we denote by F |q the conditional distribu-
tion of the low q-quantile of F ; i.e., the mass of size q of the lowest
values of F . We denote by F |1−q the conditional distribution of the
high (1 − q)-quantile of F ; i.e., the mass of size 1 − q of the highest
values of F . The garbling G(q) pools together the mass of F |q into the
posterior p−(q) = E[F |q] and it pools together the mass of F |1−q into
the posterior p+(q) = E[F |1−q]. The class {G(q) : q ∈ (0, 1)} is the
Pareto frontier.

1Multiplicity of equilibria might happen only in the case where some agent t has
a posterior exactly 1

2 , in which case both choices at = 0, 1 can occur in equilibrium.
2Note that by the imitation principle, in any equilibrium, P[at+1 = θ] ≥ P[at =

θ], so this is an increasing bounded sequence which converges to the probability
that the agents herd on the correct action.
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As usual in social learning, and more generally in aggregation of con-
ditionally independent signals, the log-likelihood ratio plays a central
role. We denote by LL : (0, 1) ! R the log-likelihood ratio trans-
formation LL(x) = log( x

1−x
). For convenience of notations we also

define LL(0) = −∞ and LL(1) = ∞. Its inverse is the logit function
logit : R ! (0, 1) defined by logit(x) = ex

1+ex
. Again, for notation

convenience, we define logit(−∞) = 0 and logit(∞) = 1.

The width of F is defined as Wid(F ) = supq∈(0,1)

(
LL(p+(q)) −

LL(p−(q))
)
; namely, it captures the maximal log-likelihood distance

that can be induced from F . The value q that maximizes the width,
when it exists, is denoted by q∗.3 We also denote p∗− = p−(q

∗) and
p∗+ = p+(q

∗). Perhaps surprisingly, calculating the width is tractable
for distributions commonly used in the social learning literature (see
the examples in Section 2.3).

2.2. Main result. We are now ready to state our main theorem.

Theorem 1. For every F we have Wadap = Wstat = logit(Wid(F )).

The theorem states that the static regulator is as powerful as the
adaptive regulator. Both can achieve the social welfare of logit(Wid(F ))
by careful garbling of information. Moreover, even the adaptive regu-
lator cannot exceed the logit(Wid(F )) bound. Furthermore, our proof
is constructive and suggests a simple sequence of garblings (i.e., static
garbling) that approaches the social welfare of Wid(F ).

Remark 2. It follows from the proof of Theorem 1 that for every
ϵ > 0 there exists T ∈ N and two garblings Gs, Gl ⪯ F for which the
T -periodic sequence of garblings

(Gs, ..., Gs, Gl, Gs, ..., Gs, Gl, ...),

in which Gs repeats T − 1 times, guarantees a social welfare of at
least Wid(F ) − ϵ. The notation Gs captures the idea that Gs should
(typically) reveal a small amount of information about the state and is
expected to have a small effect on the learning process. The notation Gl

captures the idea that Gl should reveal a large amount of information
about the state and is expected to have a large effect on the learning
process. In fact, Gl is precisely the q∗-quantile binary garbling that
maximizes the width.

3One can show that if signals are bounded, i.e., does not contain {0, 1} in the
support, then the maximum exists.



THE POSITIVE EFFECT OF GARBLING ON SOCIAL LEARNING 7

The exact expression for social welfare (i.e., the probability of herd
on the correct action) is a complicated object without any garbling
(namely when F is not garbled). Thus, the clean expression of logit(Wid(F ))
is somewhat surprising. Moreover, this result allows us to bound from
above the social welfare in the classical social learning setting (without
garbling).

Corollary 3. In the standard herding model in which all agent’s signals
are distributed according to F , the probability that agents will herd on
the correct action is at most logit(Wid(F )).

The corollary simply follows from the fact that one option for the
regulator is not to garble the information of any agent.4

2.3. Examples. To illustrate our results, we calculate the width and
demonstrate the scope for improvement for three families of distribu-
tions: signals that are unbounded from one side, signals distributed
ex-ante uniform on an interval, and binary signals.

Example 1: Signals unbounded from one side

Distributions that do not induce arbitrarily strong posteriors, in the
sense that their support does not contain 0 or 1, are referred to as
bounded (see [6], [13]). There are two types of distribution which are not
bounded. The first type is the unbounded distribution which was in-
troduced by Smith and Sorensen [13]. Under unbounded distributions,
it is known that asymptotic learning holds and thus the asymptotic ac-
tion matches the state with probability 1. Therefore, under unbounded
signal, no regulator intervention is needed since the asymptotic welfare
is 1 without any intervention.

The second type of distributions which are not bounded are distribu-
tions that are unbounded only on one side. Namely, those distributions
that contain either 0 or 1, but not both, in the support. For such dis-
tributions it holds that for any ε > 0, there is a q such that either
p−(q) < ε or p+(q) > 1− ε. Therefore, since

Wid(F ) ≥ LL(p+(q))− LL(p−(q)) ≥ max (|LL(p+(q))|, |LL(p−(q))|),

it follows that in either case, Wid(F ) > LL(1−ε) > log
(
1
ε

)
−1 and thus

Wid(F ) = ∞. Therefore under regulation, the probability of herding
on the correct actions for such distributions can be made arbitrarily
close to 1.

4In fact, Corollary follows from the first stage in our proof; see Lemma 4.
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Interestingly, for every ϵ > 0 there exists a bounded from one side
distributions F for which the standard herding model herds on the cor-
rect action with a probability of at most 1

2
+ϵ. For those distributions F

the regulator increases the probability of herding from 1
2
+ϵ, which cor-

responds to essentially no information aggregation, to approximately
1, which corresponds to the perfect learning of the state.

To construct such an F we consider a distribution with supp(F ) =
[1
2
− ε2, 1] which never cascades (see Appendix I) for some small ε > 0.

Since 0 ≤ pt ≤ 1
2
+ ε2 and E[1

2
+ ε2 − pt] = ε2, by Markov’s inequality

P[pt ≤ 1
2
− ε] ≤ ε, so

E[max (pt, 1− pt)] ≤ ε · 1 + (1− ε) · (1
2
+ ε) =

1

2
+O(ε).

Since P[at = θ] = E[max (pt, 1− pt)], it follows that the probability
of herding on the correct action is 1

2
+ O(ε). On the other hand, by

Theorem 1,

Wadap = Wstat = logit(Wid(F )) = 1.

Example 2: Uniform signals

Suppose F ∼ U([1 − r, r]) with r ∈ (1
2
, 1). A straightforward calcu-

lation gives

p−(q) =
1− (1− q)α

2

p+(q) =
1 + qα

2

where α = 2r − 1, and hence

LL(p+(q))− LL(p−(q)) = log

(
1 + qα

1− qα

)
+ log

(
1 + (1− q)α

1− (1− q)α

)
·

This function is quasi-convex and symmetric about 1
2
, so

Wid(F ) = lim
q!1

LL(p+(q))− LL(p−(q)) = log

(
1 + α

1− α

)
= LL(r).

By Theorem 1,

Wadap = Wstat = logit(Wid(F )) = r.

Moreover, since supp(F ) = [1− r, r], the probability of herding on the
correct action is at least r, and so must be exactly r. Hence, for such
a distribution, the regulator cannot improve the probability of herding
on the correct action.



THE POSITIVE EFFECT OF GARBLING ON SOCIAL LEARNING 9

0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

Figure 1. Correct herd probability for binary signals
with support {1

3
, x}

Example 3: Binary signals

Let supp(F ) = {r−, r+} for r− < 1
2
< r+ denote the two points in

the support. Since F is a binary garbling of itself,

Wid(F ) ≥ LL(r+)− LL(r−).

Moreover, for any q ∈ (0, 1), p−(q) ≥ r− and p+(q) ≤ r+, so

LL(p+(q))− LL(p−(q)) ≤ LL(r+)− LL(r−).

It follows that
Wid(F ) = LL(r+)− LL(r−).

By Theorem 1,

Wadap = Wstat = logit(Wid(F )) =
r+(1− r−)

r+(1− r−) + r−(1− r+)
·

There is no known closed-form expression for the probability of herd-
ing on the correct action for binary signals in the standard herding
model (without garbling). A well-known lower bound is given by

(1
2
− r−)r+ + (r+ − 1

2
)(1− r−)

r+ − r−
·

In Figure 1, we plotWadap (top curve), the lower bound (bottom curve),
and an approximation for the probability of herding on the correct
action using simulations, with r− = 1

3
and r+ ranging from 1

2
to 1.
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2.4. Proof Idea of Theorem 1. A central notion for analyzing social
learning dynamics is the public belief martingale (pt)

∞
t=0. The public

belief captures the belief about the state of an outside observer who is
not exposed to any information beyond the actions of the agents. Ini-
tially the public belief is the prior p0 = π (p0 =

1
2
with our simplifying

assumption that the prior is π = 1
2
). In every period t the public belief

has two possible updates conditional on the last action being 0 or 1.
By the law of iterated expectation, one can see that

at = 0 ⇒ pt ≤
1

2
and at = 1 ⇒ pt ≥

1

2
·(1)

Namely, the last played action indicates whether the public belief be-
longs to [0, 1

2
] or to [1

2
, 1].

Denote by p = min{x ∈ suppF} and p = max{x ∈ suppF} the
two most extreme signals of F . Notice that if LL(pt) < −LL(p) then
there is a cascade on the action a = 0 because no signal is sufficiently
informative to switch the belief of an individual above 1

2
. Similarly if

LL(pt) > −LL(p) then there is a cascade on the action a = 1 because
no signal is sufficiently informative to switch the belief of an individual
below 1

2
. In other words, all states x /∈ [logit(−LL(p)), logit(−LL(p))]

are absorbing for the martingale of public belief. The segment of non-
absorbing states is denoted by I = [logit(−LL(p)), logit(−LL(p))].

The public belief martingale also captures the probability of herd-
ing on the correct action. Denote by p∞ the limit distribution of the
martingale (pt). The probability of a correct herding is given by

W =

∫ 1
2

0

(1− x)dp∞ +

∫ 1

1
2

xdp∞.(2)

Namely, if in the limit we are absorbed in the public belief x > 1
2
, then

there is herding on a = 1 and, indeed the probability of this herding
being correct is x; similarly for the first expression of Equation (2).

All the above observations hold also for social learning with garbling.
The only difference is that the private signals of the agents are drawn
according to Gt ⪯ F .

Intuitively, Equation (2) together with the fact that the non-absorbing
region is I indicates that in order to increaseW we would like to achieve
the following phenomenon: in the last step before a cascade, the public
belief ”jumps maximally out of I”. So the question is: how far from I
can the public belief jump? The answer to this question turns out to
be the width.

Lemma 4. For every sequence of garblings (Gt)t we have |LL(x)| ≤
Wid(F ) for every x ∈ supp p∞.
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Namely, LL(x) ≤ Wid(F ) means that the public belief cannot jump
to the right of logit(Wid(F )), and LL(x) ≥ −Wid(F ) means that the
public belief cannot jump to the left of logit(−Wid(F )).

Proof of Lemma 4. Observe that the private signals drawn from Gt ⪯
F that yield the actions at = 0, 1 have a threshold structure: all signals
(of Gt) below logit(−LL(pt)) yield the action at = 0, and all signals
above logit(−LL(pt)) yield the action at = 1. Thus the public signals
corresponding to actions at = 0, 1 are precisely p−(q), p+(q), where q is
the probability of action at = 0 given the history of actions up to time
t.

Now, observe that

LL(pt) =

{
LL(pt−1) + LL(p−(q)), if at = 0

LL(pt−1) + LL(p+(q)), if at = 1

If q = 0 or q = 1, then at conveys no information, so pt = pt−1. If
0 < q < 1, then

LL(pt−1) + LL(p−(q)) ≤ 0 ≤ LL(pt−1) + LL(p+(q)),

so if at = 0, then

0 ≥ LL(pt) = LL(pt−1) + LL(p−(q)) ≥ −[LL(p+(q))− LL(p−(q))],

and if at = 1, then

0 ≤ LL(pt) = LL(pt−1) + LL(p+(q)) ≤ LL(p+(q))− LL(p−(q)),

and in either case,

|LL(pt)| ≤ LL(p+(q))− LL(p−(q)) ≤ Wid(Gt) ≤ Wid(F ).

Putting these observations together, it follows that

|LL(pt)| ≤ max (|LL(pt−1)|,Wid(F ))

almost surely. Since |LL(p0)| = 0 ≤ Wid(F ), it follows by induction
that |LL(pt)| ≤ Wid(F ) for all t almost surely, and the claim follows.

□

The proof of Lemma 4 instructs us also how to reach the bound of
Wid(F ): Ideally, for a cascade from the right side of I we want the
public belief to reach LL(pt−1) = −LL(p∗−) − ϵ at time t − 1 for some
small ϵ > 0. At the time t, we would like to garble the information via
the q∗-quantile threshold garbling which results in a public belief with
LL(pt) ≈ Wid(F )− ϵ if the action is at = 1. Otherwise, if the action is
at = 0, the resulting public belief will be approximately LL(pt) ≈ −ϵ
and will remain inside the interval I.
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For a cascade from the left side of I we want a symmetric picture:
the public belief should reach LL(pt−1) = −LL(p∗+) + ϵ. At the time
t, we again use the q∗-quantile threshold garbling which potentially
will bring us to a public belief of LL(pt) ≈ −Wid(F ) + ϵ. Otherwise,
if the action would be at = 1 the public belief will be approximately
LL(pt) ≈ ϵ and will remain inside the interval I. Figure 2 summarizes
the desirable plan of the regulator on the behavior of the public belief.

−Wid(F ) + ϵ−LL(p∗+) + ϵ −LL(p∗−)− ϵ

−LL(p) −LL(p)

0 Wid(F )− ϵ

Figure 2. The Figure demonstrates the desirable plan
of the regulator in the log-likelihood space. Wavy arrows
capture a slow dynamic movement of the public belief
towards one of the points −LL(p∗+) + ϵ or −LL(p∗−)− ϵ.
Arc arrows capture the possible jumps of the public belief
that occurs in a single period of the q∗-quanite garbling.
The bold line corresponds to the interval I (i.e., the non-
cascade region of the public belief).

An important (and somewhat surprising) observation is that the gar-
bling that should be applied at both points, near logit(−LL(p∗+)) and
near logit(−LL(p∗−)), is the same garbling.

If we follow these instructions, eventually we will reach a cascade
either ϵ-close to logit(Wid(F )) or ϵ-close to logit(−Wid(F )). To follow
these instructions we have two challenges: (a) to bring the public belief
near logit(−LL(p∗+)) or near logit(−LL(p∗−)) and (b) to identify the
time when we are there. Notice that challenge (b) is actually a challenge
when we consider a static regulator who should in advance determine
the sequence of garblings and cannot track the location of the public
belief.

We show that challenges (a) and (b) can be accomplished even by the
static regulator. To achieve these goals we design a garbling such that
if it is applied repeatedly then the public belief (almost) continuously
moves to one of the points logit(−LL(p∗+)) or logit(−LL(p∗−)) with
the guarantee of not crossing them. Moreover, the time on which the
public belief reaches these points can be accurately predicted and hence
is addressed too.



THE POSITIVE EFFECT OF GARBLING ON SOCIAL LEARNING 13

3. A regulator with transparent motives

We now consider a regulator whose goal is to maximize the proba-
bility of herding on a particular action, say a = 1. In this case, given a
policy r, we take the regulator’s utility for an equilibrium E ∈ BNE(r)
to be U(E) = limt!∞ P[at = 1], and we again evaluate r according to
the worst-case equilibrium U(r) = infE∈BNE(r) U(E). As in the previ-
ous section, we denote by Uadap and Ustat the supremum of U(r) taken
over adaptive and static regulation policies, respectively.

For this problem, the prior plays a more important role. In par-
ticular, for π > 1

2
the solution is trivial. The regulator can prevent

any information, and the agents herd on action a = 1 with probability
1. For π = 1

2
, the regulator can design an initial garbling G1 such

that after step t = 1 the public belief will be pt > 1
2
with probabil-

ity arbitrary close to 1 and prevent any further information in latter
steps, and hence again can ensure a utility that approaches 1. Con-
versely, for π ≤ logit(−LL(p̄)), no matter what policy the regulator
chooses, it is an equilibrium for all agents to take action a = 0, in
which case the probability that the agents to herd on action a = 1 is
0. Hence, our main result restricts attention to priors in the interval
π ∈ (logit(−LL(p)), 1

2
).

Using Lemma 4 and the martingale condition, it is easy to establish
an upper bound on the utility of any policy:

P(p∞ ≥ 1

2
) =

π − E(p∞ | p∞ < 1
2
)

E(p∞ | p∞ ≥ 1
2
)− E(p∞ | p∞ < 1

2
)
≤ π − logit(−Wid(F ))

1
2
− logit(−Wid(F ))

·

Our result shows that for a binary-supported F , the adaptive regu-
lator can achieve this bound but the static regulator cannot.

Theorem 5. If F is binary-supported and logit(−LL(p̄)) < π < 1
2
,

then

Ustat < Uadap =
π − logit(−Wid(F ))
1
2
− logit(−Wid(F ))

·

This shows that if the incentives of the regulator are different from
the agents’ incentives, then a gap may exist between the static and the
adaptive regulator.

Remark 6. While Theorem 5 is stated for binary signals, a similar
statement holds for general signals. Unlike in Theorem 5, the upper
bound depends on π; however, for any distribution and prior, Ustat <
Uadap.
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Proof idea of Theorem 5. In Theorem 1, the goal of the regulator
was to attract as much as possible the distribution p∞ to the boundaries
(0 and 1). This is formally reflected by the objective in Equation (2).
Here the objective is to maximize its mass on [1

2
, 1] (namely to maximize

P(p∞ ≥ 1
2
)).

To reach this objective, the regulator wants to cause p∞ to be sup-
ported on two points: a and 1

2
with a being as low as possible. Lemma

4 tells us that the lowest value for a would be a = logit(−Wid(F )).
We show that it is attainable by an adaptive regulator, but not by the
static regulator.

The adaptive regulator can cause supp(p∞) ⊂ [a, a+ϵ)]∪ [1
2
, 1
2
+ϵ] by

modifying the ideas of Theorem 1. For every pt ∈ (logit(−LL(p∗+)),
1
2
)

we design a garbling that causes the public belief either to move towards
logit(−LL(p∗+)) but not to cross it or to jump to 1

2
+ ϵ. We apply these

garblings sequentially as far as we move towards logit(−LL(p∗+)). If we
jump to 1

2
+ ϵ we stop revealing any information. After finitely many

steps towards logit(−LL(p∗+)) we are very close to it. Then, to make
a ”big jump” to either a + ϵ or to 1

2
+ ϵ we make a single iteration of

the q∗-quantile threshold garbling.

−Wid(F ) + ϵ−LL(p∗+) + ϵ

−LL(p) −LL(p)

0LL(π)

Figure 3. The Figure illustrates the desirable plan of
the regulator in the log-likelihood space. The wavy arrow
captures a slow dynamic movement of the public belief
towards the point −LL(p∗+) + ϵ (or a jump to ϵ). Arc
arrows capture the possible jumps of the public belief
that occurs in a single period of the q∗-quanite garbling.
The bold line corresponds to the interval I (i.e., the non-
cascade region of the public belief). The circles indicate
the two ideal points in supp(p∞) for the regulator that
are reached (up to ϵ) by the plan.

The static regulator cannot follow these instructions. The commit-
ment in advance to apply the q∗-quantile threshold garbling at some
future time t can be harmful: for example, if at time t the public belief
is at [1

2
, 1
2
+ ϵ], then a play of action 1 will cause the public belief being



THE POSITIVE EFFECT OF GARBLING ON SOCIAL LEARNING 15

far from 1
2
. On the other hand, if she commits never to use the q∗-

quantile threshold garbling (or a similar garbling with a similar effect),
then she is unable to make the desirable big jump to logit(−Wid(F )).

4. Conclusion

The impact of regulation on society can be significant. In our work,
we examine a regulator in the standard herding model that can garble
agents’ private information. We have considered two types of regu-
lators: a dynamic regulator that can garble private information as a
function of public information and a static regulator that has to pre-
commit to its garbling strategy. Another weaker type of regulator that
we didn’t consider is the fixed regulator that pre-commits to a garbling
strategy that is identical for all agents. In this regard, one may show
that for signals that are bounded from one side (see Example 1 in Sec-
tion 2.3) our main Theorem 1 can be strengthened, and there exists a
(nearly) optimal fixed garbling policy.

A fundamental assumption in the standard herding model that we
have used is that agents observe all past predecessors’ actions when
they take their actions. A natural question is whether our results are
still valid under partial observability of the agents. We believe that
our results carry forward to a large class of deterministic observation
structures. One such class is obtained where the agents observe their
k direct predecessors.

The classic result of Smith and Sorensen [13] demonstrates that when
signals are unbounded, the asymptotic probability of taking the correct
action approaches one with time. More recently, Rosenberg and Vieille
[11] show that for a large class of unbounded signals, learning can be
very slow, and the expected time for the first correct action is infinite.5

In light of this striking negative result, a natural question to ask is
whether regulation of the kind we study here can improve the speed of
learning.

5More on the asymptotic speed of learning can be found in Hann-Caruthers,
Martynov, and Tamuz [7].
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Appendix A. Appendix I: Sequential learning model
dynamics

A.1. Notation. Denote by ht = (a1, . . . , at) the history of actions up
to time t. Given a policy r and an equilibrium E ∈ BNE(r), we denote
by pt := P[θ = 1 |ht] the public belief at time t and by ℓt = LL(pt) the
log-likelihood ratio of the public belief. Observe that

ℓt+1 = ℓt + log

(
P[at+1 |ht, θ = 1]

P[at+1 |ht, θ = 0]

)
= ℓt + LL(E[st+1 | st+1 ∈ A

at+1

t+1 ]),

where Aa
t+1 is the set of signals for at+1 = a. Observe that if LL(s) <

−ℓt then s ∈ A0
t+1 and s /∈ A1

t+1. Similarly, if LL(s) > −ℓt, then
s /∈ A0

t+1 and s ∈ A1
t+1.

Define

EG
−(x) := p−(G(logit(−x)))

EG
+(x) := p+(G(logit(−x))).

and

dG−(x) := x+ LL(EG
−(x))

dG+(x) := x+ LL(EG
+(x)).

It follows that if at+1 = 0, then

sup
−x<−ℓt

d
Gt+1

− (x) ≤ ℓt+1 ≤ d
Gt+1

− (ℓt),

and if at+1 = 1, then

d
Gt+1

+ (ℓt) ≤ ℓt+1 ≤ inf
−x>−ℓt

d
Gt+1

+ (x).

In particular, if logit(−ℓt) is not an atom of Gt+1, then

at+1 = 0 =⇒ ℓt+1 = ℓt + d
Gt+1

− (ℓt)

and

at+1 = 1 =⇒ ℓt+1 = ℓt + d
Gt+1

+ (ℓt).

We will denote p = inf (supp(F )) and p = sup (supp(F )).
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A.2. Signals that never cascade. Throughout this subsection, we
assume that Gt = F for all t. Denote I = (−LL(p),−LL(p)). We

say that F never cascades if dF−(I), dF+(I) ⊆ I. Observe that if F is
nonatomic and Gt = F for all t, then in any equilibrium, ℓt ∈ I for all
t; in particular, for any history ht−1, 0 < P[at = 1 |ht−1] < 1. As the
following result demonstrates, for any interval I containing 1

2
, there is

a distribution that never cascades whose support is I.

Theorem 7. For any closed interval I ⊆ [0, 1] with inf (I) < 1
2
<

sup (I), there is a nonatomic distribution F that never cascades with
supp(F ) = I.

If F never cascades, then a standard argument shows that in any
equilibrium, supp(ℓ∞) = {−LL(p),−LL(p)}. The following result
shows that the time required for ℓt to be close in distribution to ℓ∞
can be uniformly bounded. For ε > 0, define

Bε = {x ∈ I : | − LL(p)− x| < ε or | − LL(p)− x| < ε}.

Proposition 8. If F never cascades, then for any ε > 0, there is a T
such that in any equilibrium, if ℓt ∈ [−ε, ε] for some history ht,

P[ℓt+T ∈ Bε |ht] ≥ 1− ε.

For the proofs of Theorem 7 and Proposition 8, see Appendix III.

Appendix B. Appendix II: Proofs of main results

Proof of Theorem 1. By Lemma 4, Wstat ≤ logit(Wid(F )). Hence it is
sufficient to prove that Wstat ≥ logit(Wid(F )). Moreover, if F is not
binary, then

logit(Wid(F )) = logit( sup
F ′∈Gbin

(Wid(F ′))) = sup
F ′∈Gbin

(logit(Wid(F ′))),

where Gbin is the set of binary F ′ ⪯ F . Since Wstat(F ) ≥ Wstat(F
′)

whenever F ′ ⪯ F , it follows that it is sufficient to prove the claim
when F is binary.

So assume F is binary. Define

ρ := emin (LL(p),−LL(p)) − e−Wid(F ).
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Observe that

P[st = p | θ = 0] = e−LL(p) · P[st = p | θ = 1]

= e−LL(p) · (1− P[st = p | θ = 1])

= e−LL(p) · (1− eLL(p) · P[st = p | θ = 0])

≥ e−LL(p) · (1− eLL(p))

≥ ρ.

A similar calculation shows that P[st = p | θ = 1] ≥ ρ. Hence, for
s ∈ {p, p} and t ∈ {0, 1}, P[st = s | θ = t] ≥ ρ.

Fix η > 0, and choose N and ε < η such that (1 − ρ)N < η
2
and

(1− ε)(1−Nε) > 1− η
2
.

By Theorem 7 and Proposition 8, there is a G ⪯ F and a T such
that if GnT+1 = · · · = G(n+1)T−1 = G then ℓnT ∈ I =⇒ ℓ(n+1)T−1 ∈ I
and

P[ℓ(n+1)T−1 ∈ Bε | ℓnT ∈ [−ε, ε]] ≥ 1− ε.

Let r be the policy where GnT = F and GnT+k = G for n ≥ 1 and
1 ≤ k ≤ T − 1.

Denote

Xn := {|ℓnT | < ε}
Yn := {ε < |ℓnT | < Wid(F )− ε}
Zn := {|ℓnT | ≥ Wid(F )− ε}.

Observe that since Xn =⇒ ℓn(T+1)−1 ∈ I,

P[Yn+1 |Xn] ≤ P[ℓn(T+1)−1 ∈ I \ Bε |Xn] = 1− P[ℓn(T+1)−1 ∈ Bε |Xn] ≤ ε,

so

P[Yn+1] ≤ P[Yn] + ε · P[Xn] ≤ P[Yn] + ε,

and it follows that for all n, P[Yn] ≤ nε. Thus,

P[Zn+1] ≥ P[Zn] + P[Zn+1 |Xn] · P[Xn]

≥ P[Zn] + (1− ε)ρ(1− nε− P[Zn])

= (1− (1− ε)ρ)P[Zn] + ρ(1− ε)(1− nε)

≥ (1− ρ)P[Zn] + ρ(1− η

2
).
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Moreover, if P[Zn] ≥ 1− η
2
− (1− ρ)n, then

P[Zn+1] ≥ (1− ρ)[1− η

2
− (1− ρ)n] + ρ(1− η

2
)

= 1− η

2
− (1− ρ)n+1·

Since P[Z0] = 0 ≥ 1− η
2
− (1− ρ)0, it follows by induction that

P[ZN ] ≥ 1− η

2
− (1− ρ)N ≥ 1− η.

Hence,

P[|ℓ∞| ≥ Wid(F )− η] ≥ P[|ℓ∞| ≥ Wid(F )− ε]

≥ P[|ℓNT | ≥ Wid(F )− ε]

≥ 1− η.

It follows that Wstat ≥ (1 − η) logit(Wid(F ) − η). Since this holds
for all η > 0, Wstat ≥ logit(Wid(F )).

□

B.1. Proof of Theorem 5. We will prove Theorem 5 in two parts.
Denote

Ū =
π − logit(−Wid(F ))
1
2
− logit(−Wid(F ))

·

As shown above,

Ustat ≤ Uadap ≤ Ū .

We begin by showing that for the adaptive regulator, this upper bound
is achieved.

Proposition 9. If F is binary-supported and logit(−LL(p̄)) < π < 1
2
,

then

Uadap ≥ Ū ·

Proof. Fix ε > 0, and define the policy rε as follows. If ℓt is above 0 or
below −LL(a), send an uninformative signal. If −LL(p) + ε < ℓt ≤ 0,
send the signal G with supp(G) = {logit(−ε), logit(−ℓt + ε)}. Other-
wise, send the signal F .

First, note that for all sufficiently small ε, this policy is well-defined,
since p ≤ logit(−ε) < 1

2
, and for −LL(p) + ε < ℓt ≤ 0, 1

2
< logit(−ℓt +

ε) ≤ p, so G ⪯ F .
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Now, observe that under rε, p∞ is supported in [0, logit(−Wid(F )+
ε)] ∪ (1

2
, ε]. It follows from the martingale condition that

π = E[p∞] ≤ P[p∞ <
1

2
] · logit(−Wid(F ) + ε) + P[p∞ >

1

2
] · logit(ε)

so

U(rε) = P[p∞ >
1

2
] ≥ π − logit(−Wid(F ) + ε)

logit(ε)− logit(−Wid(F ) + ε)
.

Hence,

Uadap(π) ≥ sup
ε

U(rε) ≥ Ū .

□

We next show that the first inequality above is strict; that is, the
adaptive regulator can always do strictly better than the static regula-
tor.

Proposition 10. If F is binary-supported and logit(−LL(p̄)) < π < 1
2
,

then

Ustat < Ū.

The proof of Proposition 10 is somewhat more involved than the
proof of Proposition 9. For ease of exposition, we split the argument
into several Lemmas (see proofs below).

Proof of Proposition 10. Fix a policy r. First, in order for U(r) to be
close Ū , most of the mass of p∞ must be concentrated near logit(−Wid(F ))
and 1

2
. Denote

δ0 = E[p∞ | p∞ <
1

2
]− logit(−Wid(F ))

δ1 = E[p∞ | p∞ ≥ 1

2
]− 1

2

C = min

(
1

2
− π, π − logit(−Wid(F ))

)
.

Lemma 11.
U(r) ≤ Ū − C ·max (δ0, δ1).

So it is sufficient to show that δ0 and δ1 cannot both be close to 0.
As the following Lemma demonstrates, in order for δ0 to be close to 0,
there must be some time t where Gt is close to F . Say that G ⪯ F is an
ε-approximation of F if |Gt(p+ε)−F (p)| <

√
ε andG(p−ε)−G(p+ε) <√

ε.
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Lemma 12. For every ε > 0 sufficiently small, there is a δ > 0 such
that if δ0 < δ then Gt is an ε-approximation of F for some t.

On the other hand, observe that

δ1 = E[p∞ − 1

2
| p∞ ≥ 1

2
] ≥ E[f(p∞)],

where f(x) = 1(x ≥ 1
2
)·(x− 1

2
). Since f is convex and pt is a martingale,

E[f(pt)] is increasing in t. In particular,

δ1 ≥ sup
t

E[f(pt)].

Now, for any t, π′, and κ > 1
2
,

E[f(pt+1)] ≥ (κ− 1

2
) · P[pt+1 ≥ κ, pt ≥ π′, at+1 = 1].

Hence, we have the following.

Lemma 13. Suppose for that for some ε > 0, κ > 1
2
, and π′ there

exists a D > 0 such that if Gt+1 is an ε-approximation of F then

P[pt+1 ≥ κ, pt ≥ π′, at+1 = 1] ≥ D.

Then there is a δ > 0 such that max (δ0, δ1) ≥ δ.

Let

κ = logit(
1

2
min (LL(π′) + LL(p),−LL(p)))

and

π′ =
p+ π

2
·

Observe that if Gt+1 is an ε-approximation of F , then

|1−Gt+1(p− ε)− (1− F (p))| ≤ |Gt+1(p− ε)−Gt+1(p+ ε)|
+ |Gt+1(p+ ε)− F (p)|
< 2

√
ε,

so

P[st+1 > p− ε] = 1−Gt+1(p− ε) > 1− F (p)− 2
√
ε.

Now, if at+1 = 1, then

ℓt+1 ≥ d
Gt+1

+ (ℓt) = ℓt + LL(E[st+1 | st+1 ≥ logit(−ℓt)]).
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If pt ≥ κ and at+1 = 1, then pt+1 ≥ pt ≥ κ. For ε sufficiently small, if
π′ ≤ pt ≤ κ, then

E[st+1 | st+1 ≥ logit(−ℓt)] ≥ E[st+1 | st+1 ≥ p+ ε]

≥
1− F (p)− 2

√
ε

1− F (p)−
√
ε

· (p− ε)

≥ logit(
1

2
(−LL(π′) + LL(p))),

so

ℓt+1 ≥ LL(π′) +
1

2
(−LL(π′) + LL(p)) ≥ LL(κ).

Thus, for ε sufficiently small, pt ≥ π′ and at+1 = 1 implies pt+1 ≥ κ, so

P[pt+1 ≥ κ, pt ≥ π′, at+1 = 1] = P[pt ≥ π′, at+1 = 1]

≥ P[st+1 > p− ε | pt ≥ π′] · P[pt ≥ π′].

Now,

P[st+1 > p− ε | pt ≥ π′] ≥ P[st+1 > p− ε | θ = 0]

≥ 2(1− p)P[st+1 > p− ε]

> 2(1− p)(1− F (p)− 2
√
ε)

and by the martingale condition

P[pt ≥ π′] =
π − E[pt | pt < π′]

E[pt | pt ≥ π′]− E[pt | pt < π′]

≥ π − π′

logit(Wid(F ))− π′

≥ π − π′

=
1

2
(π − p)·

Hence, for ε sufficiently small,

P[pt+1 ≥ κ, pt ≥ π′, at+1 = 1] ≥ 1

2
(1− p)(1− F (p))(π − p).

□

Proof of Lemma 11. Observe that

U(r) ≤ P[p∞ ≥ 1

2
] =

π − (δ0 + logit(−Wid(F ))

(δ1 +
1
2
)− (δ0 + logit(−Wid(F ))
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so

Ū − U(r) ≥ π − logit(−Wid(F ))
1
2
− logit(−Wid(F ))

− π − (δ0 + logit(−Wid(F ))

(δ1 +
1
2
)− (δ0 + logit(−Wid(F ))

≥ (π − logit(−Wid(F )) · (1
2
− logit(−Wid(F )) + δ1 − δ0)

− (π − logit(−Wid(F ))− δ0) · (
1

2
− logit(−Wid(F )))

= (π − logit(−Wid(F )) · (δ1 − δ0) + δ0 · (
1

2
− logit(−Wid(F )))

= (π − logit(−Wid(F )) · δ1 + (
1

2
− π) · δ0

≥ C · (δ1 + δ0)

≥ C ·max (δ0, δ1).

□

To prove Lemma 12, we will use the following intermediary Lemma.

Lemma 14. For all sufficiently small η > 0, if E[st+1 | st+1 ≤ p− η] <
p+ η, then Gt+1 is an ε-approximation of F .

Proof. Let α = Gt+1(p+η) and β = Gt+1(p−η). By Markov’s inequal-
ity,

P[st+1 > p+
√
η | st+1 ≤ p− η] = P[st+1 − p >

√
η | st+1 ≤ p− η]

≤
E[st+1 − p | st+1 ≤ p− η]

√
η

<
√
η,

so β − α <
√
η. Hence,

E[st+1] ≥ p · α + (p− η) · (1− β)

= [p · α + p · (1− α)] + p · (α− β)− η · (1− β)

≥ [p · α + p · (1− α)]− 2
√
η

and

E[st+1] ≤ (p+ η) · α + (p− η) · (β − α) + p · (1− β)

= [p · α + p · (1− α)] + η · α− η · (β − α)

≤ [p · α + p · (1− α)] + 2
√
η,

and since E[st+1] =
1
2
, it follows that

|p · α + p · (1− α)− 1

2
| ≤ 2

√
η.
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Moreover, 1
2
= p · F (p) + p · (1− F (p)), so

|(p− p) · (α− F (p))| ≤ 2
√
η,

and hence |α− F (p)| ≤ 2
p−p

· √η.

Now, observe that Gt+1(p− ε)−Gt+1(p+ ε) ≤ β − α <
√
η and

α ≤ Gt+1(p+ ε) ≤ β

so

α− F (p) ≤ Gt+1(p+ ε)− F (p) ≤ β − F (p).

Since |α − F (p)| ≤ 2
p−p

· √η and |β − F (p)| ≤ |α − F (p)| + |β − α| ≤(
2

p−p
+ 1
)
· √η, it follows that for η sufficiently small, Gt+1(p − ε) −

Gt+1(p+ ε) < ε and |Gt+1(p+ ε)− F (p)| < ε. □

Proof of Lemma 12. Suppose x ≥ −LL(p), y ≤ −Wid(F )+γ, and for
some t, P[ℓt = x] > 0 and P[ℓt+1 = y | ℓt = x] > 0. Let ∆ℓ = y − x.
Observe that ∆ℓ ≤ LL(up)+γ, and since ∆ℓ ≥ LL(p), x ≤ −LL(p)+γ.
Hence,

E[st+1 | st+1 ≤ −LL(x)] = logit(∆ℓ) ≤ logit(LL(p) + γ).

Fix η > 0. For γ sufficiently small, it follows that

E[st+1 | st+1 ≤ p− η] ≤ logit(LL(p) + γ) < p+ η.

Now, observe that if δ0 is sufficiently small, then there must be a t
such that P[ℓt ≤ −Wid(F ) + γ] = 0 and P[ℓt+1 ≤ −Wid(F ) + γ] > 0.
It follows that for any η > 0, if δ0 is sufficiently small, then for some t,

E[st+1 | st+1 ≤ p− η] < η,

and the result then follows. □

Appendix C. Appendix III: Proofs for signals that never
cascade

Proof of Theorem 7. Let p = inf (I) and p = sup (I), and define

Fn(t) :=


0, t ≤ p

c−n (t− p)n, p < t ≤ 1
2

1− c+n (p− t)n, 1
2
< t < p

1, t ≥ p

where c−n =
p− 1

2

p−p
· 1

( 1
2
−p)

n and c+n =
1
2
−p

p−p
· 1

(p− 1
2)

n ·
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A straightforward calculation shows that E[Fn] =
1
2
. We will show

that dFn
+ (I) ⊆ I for all sufficiently large n. A similar argument shows

that dFn
− (I) ⊆ I for all sufficiently large n, and the claim then follows.

Let x ∈ I. If x < 0,

EFn
+ (x) = EX∼Fn [X |X ≥ logit(−x)]

=
n logit(−x) + p

n+ 1

so

dFn
+ (x) = x+ log

(
n logit(−x) + p

n(1− logit(−x)) + (1− p)

)
= x+ LL(logit(−x)) + log

(
1 + p

n logit(−x)

1 + 1−p
n(1−logit(−x))

)

≤ log

(
1 +

p

n logit(−x)

)
≤ 2p

n

where the last inequality follows from the fact that log (1 + y) ≤ y and
logit(−x) ≥ 1

2
. Hence, for n > 2p

−LL(p)
,

−LL(p) < x < d+(x) < −LL(p),

so dFn
+ (x) ∈ I.

If x > 0,

EFn
+ (x) = EX∼Fn [X |X ≥ logit(−x)]

=
E[Fn]− Fn(logit(−x)) · EX∼Fn [X |X < logit(−x)]

1− Fn(logit(−x))

=
1

2
+

(
1

2
− EFn

− (x)

)
· Fn(logit(−x))

1− Fn(logit(−x))
·

Observe that Fn(logit(−x)) is decreasing in n and EFn
− (x) is increasing

in n, so EFn
+ (x) and hence dFn

+ (x) is decreasing in n. Moreover, since

Fn(logit(−x)) ! 0 as n ! ∞, it follows that EFn
+ (x) ! 1

2
as n ! ∞,

and thus

lim
n!∞

dFn
+ (x) = x.
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Define

An = {x ∈ [0,−LL(p) : dFn
+ (x) < −LL(p)}.

Then An, is relatively open, An ⊂ Am whenever m > n and ∪An =
[0,−LL(r−)).

Now,

(dFn
+ )′(x) = 1 +

(EFn
+ )′(x)

EFn
+ (x)(1− EFn

+ (x))
.

Since

(EFn
+ )′(x) =

(
1
2
− EFn

− (x)

1− Fn(logit(−x))

)′

· Fn(logit(−x))

+

(
1
2
− EFn

− (x)

1− Fn(logit(−x))

)
· Fn(logit(−x))′,

(EFn
+ )′(−LL(p)) = 0 for n ≥ 2, so (dFn

+ )′(−LL(p)) = 1 for n ≥ 2,
and by continuity, it follows that for all x sufficiently close to −LL(p),

(dFn
+ )′(x) > 0. Moreover, limx!−LL(p) d

Fn
+ (x) = −LL(p). Hence, dFn

+ (x) <

−LL(p) for all x sufficiently close to −LL(p).
It follows that there is an ε > 0 such that (−LL(p)− ε,−LL(p)) ⊆

A2 ⊂ An for all n ≥ 2. Moreover, by compactness, [0,−LL(p)−ε] ⊆ An

for all n sufficiently large. Thus, [0,−LL(r−)) ⊆ An for all n sufficiently
large, and hence dFn

+ (I) ⊆ I for all n sufficiently large. □

Proof of Proposition 8. We show equivalently there is a T such that if
the prior π is such that LL(π) ∈ [−ε, ε], then in any equilibrium

P[ℓT ∈ Bε] ≥ 1− ε.

To begin, observe that since F is nonatomic, the distribution of pt is
the same in any equilibrium. Let

g(z) = min (| logit(−LL(p))− z|, | logit(−LL(p))− z|).

Observe that since g is concave and pt is a martingale, E[g(pt)] is
decreasing, and since F never cascades, g(pt) ! 0 almost surely, so
limt!∞ E[g(pt)] = 0.
Let η ∈ (0, ε) such that for x ∈ I, g(logit(x)) < η implies x ∈ Bε.

Observe that if E[g(pt)] < η2, then by Markov’s inequality,

P[g(pt) ≥ η] ≤ η2

η
= η < ε,
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so

P[ℓt ∈ Bε] ≥ P[g(pt) < η] = 1− P[g(pt) ≥ η] > 1− ε.

Now, observe that E[g(pt)] is continuous in π, so for every π there is a
T (π) such that E[g(pt)] < η2 for all t ≥ T (π) and π′ in a neighborhood
of π. Since [−ε, ε] is compact, the result then follows. □


