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Abstract

We consider a group of agents who can each take an irreversible costly
action whose payoff depends on an unknown state. Agents learn about the
state from private signals, as well as from past actions of their social network
neighbors, which creates an incentive to postpone taking the action. We show
that outcomes depend on network structure: on networks with a linear struc-
ture patient agents do not converge to the first-best action, while on regular
directed tree networks they do.

1 Introduction

Social networks play an important role in shaping the decisions people make. We
ask friends for advice and take cues from their decisions, and we also understand
that our friends interact with their friends in the same manner, as do our friends’
friends, and so on. In recent years, there has been a large and active body of research
devoted to understanding how the structure of the social network affects large-scale
patterns of decision-making (for recent surveys, see e.g. Golub and Sadler, 2017;
Bikhchandani et al., 2021). Nevertheless, we have only very sparse understanding
of how the structure of the social network affects the flow of information between
rational agents.

We study agents who each have to decide whether and when to adopt, i.e., take
an irreversible costly action. Examples of such actions include installing rooftop solar

∗Technion - Israel Institute of Technology. Email: whanncar@gmail.com.
†Caltech. Email: mpan2@caltech.edu.
‡Caltech. Email: tamuz@caltech.edu. Omer Tamuz was supported by a BSF award (#2018397)

and a National Science Foundation CAREER award (DMS-1944153).

1



panels, undergoing corrective eye surgery, or, more mundanely, watching a new movie
or reading a new book. We assume that there is uncertainty regarding whether it is
beneficial to adopt, determined by an unknown state of nature which is either high
or low. At time zero each agent receives a private signal regarding the state. In
each subsequent time period agents can choose to adopt, and then they observe the
decisions of their social network neighbors. If an agent has not yet adopted they
have a chance to adopt again in the next time period, but the decision to adopt is
irreversible.

Agents face a trade-off: should they use the information available to them now, or
wait and see what their neighbors do? Because adoption is irreversible, agents prefer
not to adopt if the information they have indicates that the state is likely to be low.
But even an agent who believes that the state is likely to be high may still want to
delay their decision, and only adopt if their neighbors do, since their actions reveal
additional information about the state.

The question we ask is about learning: When agents are patient, do they take
the optimal action in the long run, i.e., eventually adopt when the state is high and
never adopt when it is low? That is, does information diffuse along the network? We
show that the answer depends on the geometry of the social network. Some networks
obstruct diffusion, so that the probability that agents take the optimal action is low,
regardless of how patient the agents are. On other networks information diffuses: as
agents become more patient, their probability of taking the correct action approaches
one.

When the social network is linear, as when people live along a road in a low-
population area, there is a bound on how likely agents are to make good choices,
a bound which holds regardless of how patient the agents are. This inability to
efficiently aggregate information is driven by that fact that in linear networks, there
are few channels for the flow of information, and rational behavior renders these
channels fragile. Agents serve not only as information sources for other agents but
also as information conduits, and the inefficiency is generated by their failure to
internalize the impact their choices have on the communication of information through
the network.

The importance of rational behavior in making the information channels fragile
is underscored by the fact that this is an equilibrium phenomenon. As we show, it
is possible on these networks, out of equilibrium, for all agents simultaneously to be
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arbitrarily likely to make the right decision in the long run.
In contrast to the linear network case, we show that on networks that are very

rapidly expanding, as when people live in a city, patient agents are very likely to take
the correct action. In particular, this holds on tree networks in which each agent
observes at least two others. In the case of tree networks, independent information
flows to each agent from multiple directions, and thus even if some channels are
obstructed, there is sufficient redundancy for information to spread and for all agents
to eventually choose correctly, with high probability.

This work leaves open many interesting questions. In particular, we are far from
understanding what happens on general networks. We further discuss this in the
conclusion.

1.1 Related literature

To the best of our knowledge, the literature of social learning on social networks
assumes that the timing of agents’ actions is determined exogenously. On the other
hand, studies of endogenous action timing generally assume that agents all observe
each other or observe some kind of summary statistic of the choices made so far,
and so do not provide insights into the potential effects of network structure (see, e.g.
Chamley, 2004). We study settings with both endogenous timing and social networks.

A sizeable literature has studied learning on social networks when there is no
endogeneity in action timing. When each agent acts once at an exogenously specified
time, Bikhchandani, Hirshleifer, and Welch (1992) show that when agents see the
actions of all of their predecessors, society acts suboptimally with positive probability,
and similar results have been shown when the observational network is random (see
e.g. Acemoglu, Dahleh, Lobel, and Ozdaglar, 2011; Lobel and Sadler, 2015; Arieli
and Mueller-Frank, 2019). Bala and Goyal (1998) show that when myopic agents
that exhibit a certain kind of bounded rationality act repeatedly, bounded (out-
)degree (together with an appropriate spread of priors) leads to learning, and Mossel
et al. (2015) show that when rational agents act repeatedly, a kind of structural
“egalitarianism” is sufficient for society to eventually make good decisions. Note that
the line network is egalitarian, but does not allow aggregation of information in our
model, and so the flow dynamics in Mossel et al. (2015) are very different than those
we consider.
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Molavi et al. (2018) study long-run outcomes in models of social learning on
networks across a broad class of non-Bayesian updating rules. Huang et al. (2024)
study the rate of learning in a Bayesian setting and show that learning is slow on
every (strongly-connected) social network.

There has also been work on learning in settings with endogenous action timing
in which the agents all observe each others’ actions. The closest work to ours in
this setting is Chamley (2004), who studies a very similar base game on the complete
network. He provides a characterization of symmetric equilibria in this setting, as well
as an interesting comparison to the results in Bikhchandani, Hirshleifer, and Welch
(1992). Several papers also explore sudden shared behavior that occurs in models of
heterogeneous signal precision just after the most informed agent acts (see e.g. Zhang,
1997; Grenadier, 1999). See Section 5 of Bikhchandani et al. (2021) for a survey of
the literature on endogenous timing in social learning.

Within the operations research literature, the Bass model (Bass, 1969), a non-
strategic, reduced-form, tractable model for the adoption of new products in a pop-
ulation, has been highly influential. It has also been extended to models including
social networks (see, e.g., Fibich and Gibori, 2010). In these continuous time models
agents adopt according to a process whose rate increases with the number of neigh-
boring agents who have adopted; thus all agents eventually adopt. The tractability of
this model allow for explicit solutions of adoption times and their comparison across
different networks.

Within the economics literature, Board and Meyer-ter-Vehn (2021) study a closely
related model of adoption on a social network. In their model, as in ours, there is a
state that determines if adopting is beneficial. Each agent activates at an exogenously
determined random time, and observes whether their neighbors have adopted. If any
neighbors have adopted, they also adopt. If not, they make a strategic decision of
whether to inspect the product at a cost, which reveals the state. They then adopt
if the state is high. Their model reduces the agents’ problem to a single decision:
whether to inspect at the time they activate, given that none of their neighbors
adopted so far. As a result, their model is highly tractable, allowing them to study
comparative statics in the parameters of the (random) network.

There are several key difference between our work and that of Board and Meyer-
ter-Vehn (2021). In their model agents are short lived and only take an action at one
exogenously determined time instant, and the key consideration is whether to acquire
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costly information. Instead, in our model the agents are long lived, information is free
and exogenous, and the key strategic consideration is an endogenous timing decision.
In their model agents only adopt in the high state, and they study how the time
of adoption varies with network parameters. In contrast, we ask whether agents
eventually take the correct action. Accordingly, the conclusions from the two models
are of a different nature.

2 Model

We consider a set of agents, N , which may be finite or countably infinite. There
is a state θ, unknown to the agents, which is equally likely to be high (H) or low
(L). Each agent i receives a private signal si about the state. We assume that the
agents’ signals are i.i.d. conditional on the state, and that they are bounded; that is,
we assume the induced posterior belief πi “ Prθ “ H | sis is almost surely in ra, bs for
some 0 ă a ă b ă 1. We further assume that the signals are informative, i.e., the
distribution of pi is not a point mass at the prior 1{2. A simple example to have in
mind are symmetric binary signals,1 i.e., Prsi “ θ | θs “ q for some q P p1{2, 1q.

There are infinitely many discrete periods t “ 0, 1, 2, . . . . In each period each
agent can choose to adopt (A) or not adopt (N), and adopting is irreversible so that
once an agent has chosen to adopt they must choose to adopt in all subsequent time
periods. In a period in which an agent has not adopted, the flow payoff is zero. In
periods in which the agent has adopted, the flow payoff is 1 in the high state, and -1
in the low state.2 Agents discount at a common rate δ P p0, 1q.

There is a social network graph G describing the relationships between the agents.
The set of nodes of G is the set of players, and pi, jq is an edge if agent i observes the
actions of agent j. We denote by Ni the set of agents j that i observes. A network
undirected if pi, jq is an edge whenever pj, iq is an edge. We assume that G is finite
degree (i.e. each agent observes and is observed by only finitely many other agents).
Our first main example is the bi-infinite, undirected line. The line can be thought
of as the one-dimensional social network where there is one agent at each integer

1For purely technical reasons, we prove Theorem 4 in the nonatomic case, but we expect this
result to extend to more general signals.

2Our results generalize to the case that these two utilities are some constants u ą 0 ą u. Note
that because adoption is irreversible, this model is equivalent to a model in which adoption can be
chosen at most once, incurs a one time cost, and yields a one time payoff that depends on the state.
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location, and each agent observes the agents who are at a distance one from them.
The second main example is the directed d-regular tree, in which each agent observes
d ě 2 other agents and is observed by one other agent, and there are no cycles in
the graph. Another prototypical example to have in mind is the complete network,
which is the social network in which every agent observes every other agent.

Agent i’s action at time t is ait P tA,Nu. In each time period, each agent i observes
the adoption decisions of her neighbors in the previous period. Thus, the information
available to agent i at time t is their private signal, as well as the history hi

t “

tajt1ujPNi,t1ăt of actions taken by their neighbors in the previous periods. Accordingly,
a pure strategy σi for an agent is an adoption decision for each period t based on her
private signal and the history hi

t, subject to the constraint that adoption is irreversible,
i.e., that if σipsi, h

i
tq “ A then σipsi, h

i
t`1q “ A whenever hi

t`1 is an extension of hi
t.

Equivalently, agent i’s (pure) strategy is a choice of the adoption time τipsi, h
i
8q “

mintt : σipsi, h
i
tq “ Au. We denote strategy profiles by τ “ pτiqiPN .

Given the flow payoffs, agent i’s discounted utility is 1 ¨ δτi if the state is high,
´1 ¨ δτi if the state is low, and 0 if τi “ 8, i.e., if she never adopts. We assume
that agents are discounted expected utility maximizers. We will study Bayes-Nash
Equilibria of this game.

2.1 Diffusion

It takes time for information to diffuse through the social network. In order for agents
to be likely to adopt when the state is high and unlikely to adopt when the state is low,
it must be the case that many agents wait a long time before adopting. Accordingly,
we focus on what decisions agents have made after a long time. We will say that
agent i was eventually correct if τi ă 8 and θ “ H, or if τi “ 8 and θ “ L. That
is, the event that agent i was eventually correct is the event that either the state was
high and they eventually adopted, or the state was low and they did not adopt. We
denote by

pi “ Prpτi ă 8 and θ “ Hq or pτi “ 8 and θ “ Lqs

the probability that agent i was eventually correct. Studying the probability of even-
tual correctness is in line with much of the social learning literature, which has been
concerned with asymptotic outcomes such as herding since its inception.
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A related question is that of efficiency, which also takes into account the time at
which the correct action was taken. As we shall see, the question of efficiency turns
out to be uninteresting in this model, as for large networks, regardless of the discount
factor, expected utilities are controlled by the strengths of the signals. In particular,
when signals are symmetric binary and the equilibrium is symmetric, agents with
high signals will mix in the first period, and so their expected utility will equal the
expected utility of playing the game by themselves and adopting immediately, or
never adopting. One can think of eventual correctness as efficiency from the point of
view of a social planner who is much more patient than the agents.

On a finite social network, there is a trivial bound on how likely any agent is
to be eventually correct, simply because the agents’ decisions are made on the basis
of finitely many private signals. However, for infinite social networks that do not
have some form of structural impediment to the flow of information, it should in
principle be possible for agents to be arbitrarily likely to make the right decision
in the long run. A first important question is to understand when such structural
impediments exist. I.e., if we put incentives aside and prescribe the agents’ actions,
can they be eventually correct? As we show in Proposition 3, there are, in fact, no
such obstructions: for infinite undirected networks such as the bi-infinite line, there
is always a (non-equilibrium) protocol under which every agent is highly likely to be
eventually correct.

However, the agents’ incentives do constrain behavior, and so it is not a priori
clear if agents can also be eventually correct in equilibrium. The question we explore
is: how does the structure of the social network impact the existence of equilibrium
protocols under which agents are very likely to be eventually correct? We will show
that for some infinite networks agents are not very likely to be eventually correct:
formally, there is a p̄ ă 1 such that every agent’s probability of being eventually
correct in every equilibrium for every value of the discount factor δ is at most p̄. In
contrast, we show that for other infinite networks, agents can be eventually correct:
for every p ă 1 there exists a discount factor δ and a corresponding equilibrium such
that every agent is eventually correct with probability at least p.
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3 Results

3.1 Preliminary observations

Our first observation is that in any equilibrium, agents follow a threshold strategy in
the following sense: for each history hi

t observed by agent i at time t, if agent i has
not adopted by period t, then there is a threshold q such that if the private belief πi is
strictly above q the agent adopts, and if πi is strictly below q they do not adopt. Note
that if signals are nonatomic, the agent’s strategy is fully determined by the choice
of a threshold for each history; otherwise, the agent’s strategy may involve mixing
when πi “ q (see Lemma 2). Another simple observation is that in every equilibrium,
there are some agents who adopt with positive probability in period t “ 0; indeed, if
in periods t ă T , all agents adopt with probability 0, then any agent who would have
otherwise adopted in period T is better off adopting in period 0.

Beyond these two observations, it seems difficult to characterize equilibria on
general networks. Our main results are obtained for tree networks, which are more
tractable. A connected, undirected network is a tree if it has no cycles, i.e., if there is
no sequence of three or more distinct agents i1, . . . , in such that for k “ 1, . . . , n ´ 1,
each agent ik observes ik`1 and in observes i1. We say that directed network is
a tree if the underlying undirected network (i.e., the network corresponding to the
symmetrized observation relation) is a tree.

Tree networks enjoy a tractability advantage, since what an agent observes from
each neighbor is independent, conditioned on the state and on the agent’s own actions.
In particular, for tree networks we are able to show that all equilibria follow a natural
dynamic: in period t “ 0, some agents with high signals will adopt. In subsequent
periods, there is no spontaneous adoption: an agent will not adopt in period t ą 0 if
none of their neighbors adopted in period t ´ 1.

Proposition 1. In every equilibrium τ on a tree network, in every period t ą 0, if
τj ‰ t ´ 1 for all j P Ni, then τi ‰ t.

Intuitively, observing no new adoptions is evidence against the high state, and so
should not induce adoption. Nevertheless, we are not able to show this for general
networks, but only for trees.

This proposition implies that from the perspective of an outside observer who
sees only the decisions the agents make, equilibrium outcomes look very much like
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outcomes in standard infection or diffusion models: some agents adopt immediately,
and then the decision to adopt spreads from the initial adopters until reaching agents
who do not adopt.

3.2 The probability of being eventually correct

When agents are impatient, there is a limit to how likely they can be to be eventually
correct.

Proposition 2. Fix a network G, a private signal distribution, and an agent i. For
every δ̄ ă 1 there is an ε ą 0 such that for all discount factors δ ă δ̄ the probability
pi of agent i being eventually correct is at most 1 ´ ε in every equilibrium.

The idea behind the proof of this proposition is that when agents are impatient,
they will not want to wait a long time for information to arrive, restricting the set
of agents whose actions can conceivably influence their decision. Their decision is
hence based on a bounded amount of information. Thus, to achieve high pi, we must
consider patient agents.

We begin by exploring the line network in which the set of agents is identified
with the integers Z and pi, jq is an edge in the social network graph if |i´ j| “ 1. Our
first main result shows that this graph provides an example of a network in which
agents are not very likely to be eventually correct.

Theorem 1. Let G be the line network. Then there is a p̄ ă 1, that depends on
the private signal distribution, such that in every equilibrium, for every value of the
discount factor δ, every agent’s probability pi of being eventually correct is at most p̄.

At the heart of Theorem 1 is the fact that agents serve not only as sources of
information for other agents, but also as media for the flow of information. They
do not take into account the impact of their decisions on the information channels
they are a part of, and because there are very few information channels, they create
blockages which cannot be circumvented.

Our next result extends Theorem 1 to a larger class of networks, which we call
one-dimensional networks, and which also feature few available information channels.
An undirected network is one-dimensional if it is a tree (i.e., has no cycles) and
only finitely many agents have degree greater than two. These are graphs that can be
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Figure 1: A one-dimensional graph G with MpGq “ 2.

formed by gluing together finitely many (finite or infinite) line segments; the minimum
number of segments needed to form a one-dimensional graph G is bounded above by

MpGq “ 1 `
ÿ

i

maxt0, degpiq ´ 2u,

where degpiq is the number of neighbors i has (see Figure 1).
For such networks, we obtain a bound on the probability of being eventually

correct, which depends only on the private signal distribution and MpGq.

Theorem 2. Fix a private signal distribution and a number m ě 1. Then there exists
a p̄ ă 1 such that for every one-dimensional network with MpGq “ m, for every value
of the discount factor δ, in every equilibrium, every agent’s probability pi of being
eventually correct is at most p̄.

In many classical learning models, information aggregation fails because only a
small amount of information enters the system through the agents’ actions. In con-
trast, in this model, a hypothetical outside observer, who could see the decisions
made by all of the agents, would learn the state by observing just the actions taken
in period 0 (Proposition 8). As we explore in the next section, the failure of infor-
mation aggregation on one-dimensional networks is due to how well information is
communicated across the network.

Next, we consider infinite, directed d-regular tree networks. In these networks, a
root agent will observe d ě 2 other agents, each of which will observe d additional
agents, etc. Thus agents are arranged in layers, with d` agents in layer ` ě 0, and
each agent in layer ` observing a distinct group of d agents in layer ` ` 1. The graph
is directed in the sense that agents do not observe the agents who observe them (see
Figure 2). For these networks, we sometimes say that agent j is a child of agent i if
i observes j.
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Figure 2: Layers 0, 1, 2 and 3 of a directed 2-regular tree network.

In these networks there are many channels for information to travel; observe, for
example, that there are dk distinct (but not necessarily disjoint) observational paths
of length k arriving at each agent. We show that on these networks agents can be
arbitrarily likely to be eventually correct.

Theorem 3. Fix a private signal distribution. Let G be a directed, d-regular tree.
Then for every p ă 1, for all sufficiently large discount factors δ ă 1, and for all
symmetric equilibria, the probability pi of agent i being eventually correct is at least
p.

The idea behind the proof is the following. Since the equilibrium is symmetric, all
agents have the same probability of being eventually correct. This stands in tension
with the fact that agents can do better than their neighbors, by incorporating the
signals contained in their actions; these signals are independent because of the tree
structure. Of course, the information in the actions of neighbors can only be exploited
one period later, resulting in some loss. But when agents are very patient, this loss
only becomes significant once agents are very likely to be correct. As a result, in every
symmetric equilibrium patient agents are very likely to eventually choose correctly.3

Our final main result considers networks with high degree agents, i.e., agents
who observe many others. Building on the work of Chamley (2004), who considers

3Note that the stark contrast between trees and one-dimensional networks is not driven by the
fact that the former are directed and the latter are undirected; the same result of Theorem 1 holds
for the directed line. Rather, information is well aggregated on the tree because there are many
pathways for it to travel.
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large complete networks, we show that agents with many neighbors are likely to be
eventually correct, assuming the discount factor is neither too high nor too low. To
simplify the proof, we assume that private beliefs are nonatomic, i.e., that πi does
not equal any particular value with positive probability.

Theorem 4. Fix a private signal distribution that induces nonatomic private beliefs.
Then for each d ě 1 there is a ppdq ă 1 and a δpdq ă 1 such that limd ppdq “ 1 and
for δpdq discounting agents, in every network every agent i who observes d others has
probability pi ě ppdq of being eventually correct in every equilibrium.

Note that the result is not stated for all agents patient enough, but rather for
agents with some intermediate discount factor. The idea behind the proof is that for
intermediate values of the discount factor, sufficiently many of an agent i’s d neighbors
will adopt in the first period, thus providing i with a strong enough signal to make
a decision in the second period which is likely to be correct. This theorem implies
that on networks in which all agents observe many others, all agents are likely to be
eventually correct. Note that the converse of this statement is not true: as Theorem 3
shows, it is possible for agents to be likely to be eventually correct even when the
degrees are bounded.

4 Equilibria on the line

In this section we explain the ideas behind the proof of Theorem 1. The same ideas
also underpin Theorem 2.

Observe first that if an agent has a high probability of being eventually correct,
then their adoption decisions must provide a strong signal about the state–indeed,
an outside observer who learns only whether the agent eventually adopts or not must
have a strong belief about the state with high probability. Accordingly, to prove
Theorem 1, we show that the adoption decisions of a fixed agent do not provide a
strong signal about the state.

By Proposition 1, agents may adopt at period t “ 0, and the remaining agents
will only adopt after observing an adoption. Hence adoption spreads at unit speed
from early adopters to their neighbors, then neighbors’ neighbors etc, until an agent
decides not to adopt, even though a neighbor adopted. Consequently, if the agent
i “ 0 adopts at period t, it must be that one of the two agents who are located
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distance t from agent 0 (say agent t) adopted at period 0, and that each of the agents
between 1, . . . , t ´ 1 adopted in turn after seeing one of their neighbors adopt.

This provides a picture of the information agent i “ 0 receives by observing their
neighbor j “ 1: when agent 1 adopts at time t ´ 1, agent 0 can infer the exact
adoption decisions of agents 1 through t. This implies that agent 0 learns that agent
t had a high enough private belief to adopt at t “ 0, and that agents 1, . . . , t´ 1 had
private beliefs that (i) were not high enough for them to adopt at time t “ 0, and
(ii) were high enough to adopt upon seeing a neighbor adopt. I.e., the private beliefs
pπ1, . . . , πtq of agents 1, . . . , t are in

śt
i“1rai, ais for some bounds ai, ai.

As we now explain, the information content in such an observation cannot be
high. This is formalized in the following proposition that proves that this holds in
a very general setting. The Kullback-Leibler divergence DKL is a standard way of
quantifying how different two distributions are. Given a binary state θ P tH,Lu and
a signal with conditional distributions νH , νL, one can quantify the informativeness
of the signal by DKLpνH |νLq; see Pomatto et al. (2023) for a recent axiomatization of
this measure.

Lemma 1. Let S P t0, 1u be a uniform binary random variable, let pB1, . . . , Bnq

be conditionally (on S) independent binary random variables, each taking values in
t0, 1u, and let B “

ś

iBi be the indicator of the event that Bi “ 1 for all i. Denote
by νs the distribution of B conditioned on S “ s.

Suppose there exists an ε ą 0 such that PrS “ 1 |Bi “ 1s P rε, 1 ´ εs. Then

DKLpν1|ν0q ď 2 ¨
logpεq

logp1 ´ εq
.

To gain some intuition for this result, suppose that the Bi are symmetric, with
PrBi “ S|Ss “ r P p1{2, 1q. Then, when n is low the event B “ 1 is not very
informative, because it only aggregates a few signals. When n is high this event is
very informative, but it also happens very rarely, and so the B does not contain much
information about S in the Kullback-Leibler sense.

Lemma 1 provides a bound for the informativeness of a product event in the space
of conditionally independent, uniformly bounded signals. Importantly, this bound is
independent of the number of signals n; indeed, it applies even for n “ 8. The
statement is symmetric with respect to the labels of events and signals, so the same
result would apply if B was the indicator of the event tB1 “ b1, . . . , Bn “ bnu for any
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b P t0, 1un. This result may have applications beyond our model. For examples, if
n voters have conditionally independent (but perhaps not identical) private signals
about a state that determine their vote, then observing whether a particular voting
profile was selected is a signal of bounded informativeness.

To apply this result to our setting, we let Bi be the indicator of the event that
πi P rai, ais, and let S be the state θ. When agent 0 observes that agent 1 adopts
at time t they observe B, which, by the lemma, delivers only a bounded amount of
information—independent of t—about the state.

Lemma 1 hence implies that the observation of neighbors on the line provides a
signal whose informativeness is bounded, independently of time. Thus, regardless of
how patient agents are and how long they may wait to decide, adoption decisions
cannot be very likely to be correct. In fact, the bound given in Lemma 1 translates
directly to a bound on agent i’s probability pi of being eventually correct in any
equilibrium, a bound which depends only on the maximum private signal strength,
yielding a proof of Theorem 1. The proof of Theorem 2 for one-dimensional networks
makes similar use of Lemma 1 and also allows us to provide a quantitative bound on
pi which depends only on the maximum signal strength and MpGq.

5 Equilibria on regular directed trees

In this section we describe why agents are likely to be eventually correct on directed
d-regular trees, for d ě 2. We fix d “ 2, as the rest of the cases follow from this one.

To gain some initial intuition, fix the discount factor δ, and consider a network
with just two layers: a root agent and two children. The children observe no-one, and
so in equilibrium they decide immediately whether or not to adopt, based on their
private signals, and either adopt at period t “ 0 or never adopt. The root agent can
adopt at period t “ 0 based on its private signal, or else wait a period, and decide
at period t “ 1 after seeing the children’s actions in the previous period. Since no
more information will arrive after this, the root no incentive to wait longer, and so in
equilibrium it has no incentive to adopt in any period t ą 1.

Clearly, the root can choose at period t “ 0 using the same strategy as the
children, and hence achieve the same expected discounted utility as them. In some
cases, however, the root can do strictly better than the children. Suppose that private
signals are symmetric and binary, i.e., Prsi “ θ | θs “ r P p1{2, 1q. Then observing the
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children’s period 0 actions reveals their private signals, and so if the root agent waits
for period t “ 1, its action can be informed by three signals rather than one. If it
does choose to wait, it is optimal for it to choose an action that matches the majority
of these three signals. Equivalently, the root follows the children if they agree, and
follows its own private signals when they disagree.

Perhaps counter-intuitively, for a given discount factor δ, the root agent will wait
to see the children’s actions as long as the precision of the symmetric binary signals
r is small enough. This is because the marginal benefit of two additional signals is
large when signals are weak, and small when signals are strong. For example, if the
precision is r “ 99%, then following the majority of the three signals yields probability
of 99.97% of choosing correctly, which translates to only a 2% increase in utility, and
hence is only beneficial for discount factors above δ “ 0.98. However, if r “ 51%, then
following the majority yields a 50% increase in utility, making it beneficial already at
low discount factors. As we shall see, this phenomenon is at the heart of our proof of
Theorem 3.

When signals are not symmetric, it might not be optimal for the root to follow the
majority signal, even if it does decide to wait for the children’s actions. For example,
if positive signals are much stronger and more rare than negative ones, it will be
optimal to adopt if any of the three signals are positive. Nevertheless, as our results
below imply, if the children have low enough probability of choosing correctly, then
there will be some strategy that makes it worthwhile for the root to wait one period
and achieve strictly higher expected discounted utility than its children.

Keeping this simplified model in mind, we return to our setting, with δ ă 1, an
infinite 2-regular directed tree, and a symmetric equilibrium. In this setting too,
agents have the option of adopting if a majority of their children have adopted,
adopting if any have adopted, etc. Just like in the setting above, we show that
agents can do better than their children, if their children’s ex-ante probability of
being eventually correct is not too high. But this is impossible, since in a symmetric
equilibrium all agents have the same probability of being eventually correct. Hence, if
agents have low probability of being eventually correct, they cannot be in a symmetric
equilibrium.

To prove this theorem we need to show that when the root’s children employ the
same strategy, and when they are not too likely to be eventually correct, the root can
achieve higher expected discounted utility than the children. It thus suffices to study
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the root’s decision problem, fixing the children’s strategies. We do this in the setting
of an auxiliary model of the root’s decision problem.

In this auxiliary model time is continuous and takes values in r0, 1s. We embed
the root’s original decision problem into continuous time by mapping the discrete
period t to 1 ´ δt, and discounting t P r0, 1s by 1 ´ t. The advantage is that the
root’s decision problem is now a part of a larger—but compact—set of continuous
time models. For this larger class we can use compactness to show that the root can
do uniformly better than the children, if their probability of being eventually correct
is not too high.

Formally, we consider the following auxiliary model. As in our main model, there is
a binary state θ distributed uniformly over tH,Lu. However, in contrast to our model,
time is continuous and takes values in r0, 1s. There are exactly three agents: a root
agent 0 and two children, 1 and 2. The children 1 and 2 adopt at times τ1, τ2 P r0, 1s,
respectively, where the joint distribution of pτ1, θq and pτ2, θq are identical, and fixed
exogenously. That is, we think of the children as employing a fixed strategy, and only
consider the root’s decision problem.

The root observes a private signal s0 which is informative and bounded (as in our
main model), and in addition observes at time t which of the children (if any) have
adopted so far. Time is discounted by 1 ´ t, so that an agent who adopts at time
τi receives utility 1 ´ τi if θ “ H and utility ´p1 ´ τiq if θ “ L. Note that τi “ 1

yields utility zero regardless of the state; this will correspond to not adopting when
we translate our model into this setting.

We assume that the children’s strategies τ1, τ2 satisfy the following condition: for
every measurable T Ă r0, 1q it holds that Prτi P T | θ “ Hs ě Prτi P T | θ “ Ls. This
is a rationality assumption that captures the fact that in equilibrium agents are more
likely to adopt in the high state than in the low state, a fact which will indeed hold
when we translate our model into this setting.

The root’s decision problem is to choose τ0 P r0, 1s given the information available
to it (the private signal and if and when the children have adopted), with the aim
of maximizing its expected discounter utility. Formally, τ0 can be any stopping time
with respect to the filtration pFtqtPr0,1s, where

Ft “ σps0, p1tτ1ďsuqsďt, p1tτ2ďsuqsďtq.

In particular, the root can choose (say) τ0 “ τ1, so that it can imitate a child imme-
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diately (rather than waiting one period, as in the discrete time model).
We consider two families of strategies that the root can use to achieve this, a1,r

and a2,r, each parameterized by r P r0, 1s. As above, π0 “ Prθ “ H | s0s is the root’s
private belief.

• a1,r: The root never adopts in r0, rq. If child 1 adopts by time r0, rs, then the
root follows child 2 starting at t “ r (if both children adopt by time r, the root
adopts at time r). Otherwise, the root adopts when child 1 adopts. I.e.,

τ0 “

$

&

%

τ1 if τ1 ą r

maxtτ2, ru if τ1 ď r

Thinking of r as a relatively early time, this family of strategies entails following
the first child unless it adopts early, in which case the second child is followed;
the private signal is completely disregarded. This strategy is useful when a child
is likely to be correct, unless it acts early, or when it is likely optimal to adopt
if both children have adopted.

• a2,r: If child 1 has not adopted by time r, child 2 adopts by time r, and π0 ą 1{2,
then the root adopts at time r. Otherwise, the root adopts when child 1 adopts.
I.e.,

τ0 “

$

&

%

r if τ1 ą r, τ2 ď r, π0 ą 1{2

τ1 otherwise.

Here, the root follows its own signal at time r when the children disagree about
adopting, much like taking the majority of the signals in the two period model
discussed above.

Given a strategy of the chidlren, we show that at least one of the strategies in
one of these families yields higher expected utility for the root, as compared to the
children. Compactness allows us to bound this improvement from below, uniformly
over all strategies of the children. This implies that, when translated back to our
main model, following one of these strategies yields strictly higher expected utility
for the root, even accounting for the one period delay when mimicking, assuming
agents are patient enough.
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6 Conclusion

In this paper, we have shown that network structure can have a profound influence
on aggregate outcomes in adoption models when timing is endogenous. In particular,
in some networks the agents’ strategic behavior leads them to obstruct the flow of
information, which results in limited information aggregation, while in others there
is no such obstruction.

The model studied in this paper is rich, and we expect that we have only scratched
the surface. In particular, we are not able to say much about networks that are not
trees. As a stark example, consider the ladder network: two copies of the line networks
in which agents are also connected to their corresponding copy. Even though this
network is very similar to the line network, we do not know if Theorem 1 applies to
it. Likewise, we do not know if Theorem 3 holds for undirected regular trees, or more
generally for graphs that have similar geometric properties. We leave these questions
for future research.
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A Preliminary observations

In this section, we develop some features of agents’ behavior in equilibrium that will
be needed in the subsequent analysis. We begin with the simple observation that
agents use history-dependent thresholding when deciding whether to adopt.

Lemma 2. Suppose τ is an equilibrium. Then for every agent i and history hi
t such

that ait1 “ N for t1 ă t, there is a threshold π such that ait “ A if πi ą π and ait “ N

if πi ă π.

Note in particular that if the distribution of posteriors at every time t induced by
Ft is nonatomic, then there is a unique optimal stopping rule.

Proof. Let hi
t be such a history, and let τ̃i be any continuation strategy for agent i in

which the agent does not adopt in period t. We prove the claim by showing that if
τ̃i yields higher utility than adopting at period t at private belief πi, then it still does
at lower private beliefs.

Denote X “ 1θ“H ´ 1θ“L. Suppose that the agents observed a signal si “ s,
which induced a private belief πipsq “ Prθ “ H | si “ ss. Observe that the difference
between agent i’s expected utility if she follows τ̃i and if she instead adopts is ErX ¨

pδτ̃i ´ δtq |hi
t, si “ ss. Since δτ̃i ă δt with probability one, it follows that τ̃i is a strict

improvement over adopting at time t if and only if

πipsq ¨ Prhi
t | θ “ Hs ¨ Erδτ̃i ´ δt |hi

t, θ “ Hs

ą p1 ´ πipsqq ¨ Prhi
t | θ “ Ls ¨ Erδτ̃i ´ δt |hi

t, θ “ Ls.

Since δτ̃i ă δt, this holds if and only if

πipsq

1 ´ πipsq
ă

Prhi
t | θ “ Ls ¨ Erδτ̃i ´ δt |hi

t, θ “ Ls

Prhi
t | θ “ Hs ¨ Erδτ̃i ´ δt |hi

t, θ “ Hs
¨

Hence, if adopting immediately is suboptimal given the signal s, it is also suboptimal
given any signal s1 such that πips

1q ď πipsq. Hence, taking π to be the lowest private
belief such that if πipsq “ π then there is no continuation strategy which is a strict
improvement over adopting immediately, the result follows.

Next, we observe that since agents never adopt when the state is more likely to
be low, it follows that agents are more likely to adopt at any time in the high state
than in the low state.
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Lemma 3. In any equilibrium τ , Prτi “ t | θ “ Hs ě Prτi “ t | θ “ Ls for every agent
i and every t ě 0.

Proof. Since never adopting gives utility 0, it follows that for every history hi
t and

almost every signal si such that agent i adopts at time t,

Prθ “ H |hi
t, sis ě Prθ “ L |hi

t, sis,

so by the law of iterated expectations,

Prθ “ H | τi “ ts ě Prθ “ L | τi “ ts.

Thus,

Prτi “ t | θ “ Hs

Prτi “ t | θ “ Ls
“

Prθ “ H | τi “ ts

Prθ “ L | τi “ ts
ě 1.

B Proof of Proposition 2

Proof of Proposition 2. If G is finite, then the probability of being eventually correct
is bounded by the probability of guessing the state correctly after observing all of the
private signals, and so the result follows immediately. Hence, assume G is infinite.

Denote by u0 the expected utility of adopting at t “ 0 if πi ě 1
2

and never adopting
otherwise. Observe that agent i’s expected utility in equilibrium must be at least u0.

Fix T such that δ̄T ă u0, and let q be the probability that agent i adopts before
time T in the high state. Then agent i’s expected utility is at most 1

2
¨pq`p1´qq¨δT q ď

1
2

¨ pq ` δT q, so 1
2

¨ pq ` δT q ě u0. It follows that q ě 2u0 ´ δT ě u0.
Let m be the number of agents within a distance T of agent i, and denote by ρ

the strongest possible belief from observing m signals. Note that the probability that
agent i adopts before time T in the low state is at least 1´ρ

ρ
¨ q ě

1´ρ
ρ

¨ u0, and so the
probability of being eventually correct is at most 1 ´

1´ρ
ρ

¨ u0.

C Proof of Theorem 4

To prove Theorem 4, we begin with a few observations. Denote by πt
i “ Prθ “

H |hi
t, sis agent i’s belief at time t. We first note that if πt

i ě 1
2´δ

, then agent i adopts
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at time t. This follows from the fact that agent i’s expected utility from adopting at
time t is rπt

i ´ p1 ´ πt
iqs ¨ δt, while her expected utility from not adopting is strictly

bounded above by πt
i ¨ δt`1. This is particularly useful because the threshold 1

2´δ
is

independent of t. Hence, if an agent’s belief ever becomes strong enough, the agent
must adopt in any equilibrium.

Now, define δ̄ by p2 ´ δ̄q´1 “ b, where we recall that Supp πi “ ra, bs. If δ ă δ̄,
then πi ě 1

2´δ
with strictly positive probability. If δ is much smaller than δ̄, then

the probability that agent i adopts immediately in the low state cannot be close to
0. It follows that if δ ă δ̄, then in order for the probability that agent i is eventually
correct to be close to 1, δ must be close to δ̄. On the other hand, if δ ě δ̄, then even
agents who get the strongest possible signal may not adopt immediately, and it is not
clear what can be said in general about how agents behave in period 0.

To prove Theorem 4, we will show that if d is large and δ is close to δ̄, then pi

must be close to 1. We begin by showing that if a large amount of information is
contained in the period 0 actions of agent i’s neighbors, then she must be likely to
be eventually correct. More precisely, in terms of π1

i , the belief that agent i has after
seeing the period 0 actions of her neighbors, the next lemma states that agent i is
very likely to be eventually correct if π1

i is very likely to be close to certainty.

Lemma 4. For all ε ą 0 sufficiently small, in any equilibrium τ with δ-discounting,
if

Prπ1
i ď 1 ´ ε | si, θ “ Hs ď ε and Prπ1

i ě ε | si, θ “ Ls ď ε

for almost all si, then the probability that agent i is eventually correct is at least
p1 ´ 3εq ¨ Prπi ď 1

2´δ
´ 3εs.

Proof. Fix a signal realization si, and suppose that agent i does not adopt in period
0. Note first that if 1 ´ ε ą 1

2´δ
and π1

i ě 1 ´ ε, then π1
i ą 1

2´δ
, and agent i adopts

in period 1. Hence,

Prτi “ 1 | si, θ “ Hs ě 1 ´ ε ě 1 ´ 3ε.

Now, let A be the event that there is some t ą 1 such that πt
i ě 1

2
. By Doob’s

martingale inequality,

PrA | π1
i ă ε, θ “ L, sis ¨ Prθ “ L | π1

i ă ε, sis ď PrA | π1
i ă ε, sis ď 2ε,
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so

PrA | π1
i ă ε, θ “ L, sis ď

2ε

1 ´ ε
¨

Thus,

Prτi ‰ 8 | si, θ “ Ls ď Prπ1
i ě ε | si, θ “ Ls ` Prπ1

i ă ε | si, θ “ Ls ¨ PrA | π1
i ă ε, θ “ L, sis

ď ε ` p1 ´ εq ¨
2ε

1 ´ ε

“ 3ε,

so

Prτi “ 8 | si, θ “ Ls ě 1 ´ 3ε.

It follows that if agent i does not adopt in period 0, then the probability that she is
eventually correct is at least 1 ´ 3ε.

Now, observe that if agent i does not adopt in period 0, then her expected utility
is at least

πip1 ´ 3εqδ ´ p1 ´ πiq3εδ “ δpπi ´ 3εq,

and if she adopts in period 0, then her expected utility is πi´p1´πiq. For πi ă 1
2´δ

´3ε,
it follows that

πi ´ p1 ´ πiq ă δpπi ´ 3εq,

and hence agent i does not adopt in period 0. Thus, if πi ă 1
2´δ

´ 3ε, then she does
not adopt in period 0 and the probability that she is eventually correct is at least
1 ´ 3ε, and the result follows.

Proof of Theorem 4. Fix η ą 0, and choose δ ă δ̄ such that Prπi ą 1
2´δ

s ă 1
2
η. Denote

by S the neighbors of agent i, and observe that

log
π1
i

1 ´ π1
i

“ log
πi

1 ´ πi

` χS,

where χS “
ř

jPS log
Prτj“0 | θ“Hs

Prτj“0 | θ“Hs
, so

χS ´ logpαq ď log
π1
i

1 ´ π1
i

ď χS ` logpαq
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where α “ maxp1´a
a
, b
1´b

q. Given q P p0, 1q, define q1 such that

log
q1

1 ´ q1
“ log

q

1 ´ q
` logpαq.

It follows that

Prπ1
i ě q | θ “ Hs ě PrχS ě log

q1

1 ´ q1
| θ “ Hs

and

Prπ1
i ď 1 ´ q | θ “ Ls ě PrχS ď ´ log

q1

1 ´ q1
| θ “ Ls,

Now, for each j P S,

0 ă Prπj ě
1

2 ´ δ
| θ “ Ls ď Prτj “ 0 | θ “ Ls ď Prπj ě

1

2
| θ “ Ls ă 1,

0 ă Prπj ě
1

2 ´ δ
| θ “ Hs ď Prτj “ 0 | θ “ Hs ď Prπj ě

1

2
| θ “ Hs ă 1,

and

Prτj “ 0 | θ “ Hs

Prτj “ 0 | θ “ Ls
ě

Prπj ě 1
2

| θ “ Hs

Prπj ě 1
2

| θ “ Ls
ą 1.

Hence, by Proposition 11, for any ε P p0, 1
2
q, there is an m such that if d ě m then

Prπ1
i ě 1 ´ ε | si, θ “ Hs ě 1 ´ ε and Prπ1

i ď ε | si, θ “ Ls ě 1 ´ ε.
Note that for all ε ą 0 sufficiently small, Prπi ą 1

2´δ
´ 3εs ă η. Hence, by

Lemma 4, for every ε ą 0 there is a m such that if d ě m then the probability
that agent i is eventually correct is at least p1 ´ 3εq ¨ Prπi ď 1

2´δ
´ 3εs. Since this

approaches Prπi ď 1
2´δ

s ą 1 ´ 1
2
η, it follows that there is an m such that if d ě m

then the probability that agent i is eventually correct is at least 1 ´ η.
In particular, it follows that for every n there is a δn and an mn such that with

discount factor δn, if d ě mn then the probability that an agent with d neighbors
is eventually correct is at least 1 ´ 1

n
in any equilibrium on any network. For every

d ě m2, let n be the largest such that mn ď d, let δpdq “ δn, and let ppdq “ 1 ´ 1
n
.

The result then follows.
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D No physical impediments

Proposition 3. Let G be an infinite, connected, undirected network which contains
a bi-infinite line. For any ε ą 0, there is a strategy profile such that every agent’s
probability of being eventually correct is at least 1 ´ ε.

The key observation underlying this result is that, because agents can choose not
only whether to adopt but also a time at which to adopt, there is no bound on how
much information can be communicated between neighbors. For example, if agent i

wanted to communicate a very good approximation of her belief to agent i ` 1, the
agents could in principle agree on a protocol for when agent i should adopt depending
on her signal.

Proof. To begin, assume that G is a tree, fix a bi-infinite path in G, and label the
agents in the path by Z so that there is an edge between i and j if and only if
|i ´ j| “ 1. For each i P Z, define

xi “

$

&

%

0 if πi ă 1{2

1 if 1{2 ď πi

and let qpθq “ Prxi “ 1 | θs.
For η P p0, 1q and k ě 3, we define the strategy profile σpη, kq as follows. Each

agent i P Z adopts independently in period 0 with probability η. If agent i does not
adopt in period 0, then agent i uses the strategy

τi “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

τi´1 ` k ` xi, if τi´1 ă pk ´ 1q ¨ k

k2, if pk ´ 1q ¨ k ď τi´1 ă k2 and τi´1´pk´1q¨k`xi

k
ą

qpHq`qpLq

2

τi´1 ` 1, if τi´1 ě k2

8, otherwise

Each agent in G not in Z adopts immediately after one of their neighbors adopts, and
never adopts if their neighbors never adopt.

Observe first that for every agent not in Z, their probability of being eventually
correct is equal to the probability that the closest agent in Z is eventually correct.
Moreover, by symmetry, the probability of being eventually correct is the same for
all agents in Z.
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Now, consider agent 0, and let j be the nearest neighbor to the left of agent 0

who adopts immediately, j :“ maxiď0 τi “ 0, and let s “ 1
k

řj`k
i“j`1 xi. Note that a

sufficient condition for agent 0 to be eventually correct is j ă ´k and s ą
qpHq`qpLq

2
if

θ “ H and s ă
qpHq`qpLq

2
if θ “ L.

Fix ε P p0, 1q. Note that if k is sufficiently large, Prs ą
qpHq`qpLq

2
| θ “ Hs ą

?
1 ´ ε and Prs ă

qpHq`qpLq

2
| θ “ Ls ą

?
1 ´ ε. Similarly, if η is sufficiently small,

Prj ă ´k | θs ą
?
1 ´ ε. It follows that for all sufficiently large k and all sufficiently

small η, the probability that agent 0 is eventually correct under σpη, kq is at least
1 ´ ε.

Finally, observe that if G is not a tree, then choosing any spanning tree T and
applying the above strategy provides a strategy profile under which every agent’s
probability of being eventually correct is at least 1 ´ ε.

One implication of Proposition 3 is that, for patient agents, it is possible to ap-
proximate the first-best welfare outcome. Note that under any strategy profile, each
agent’s expected payoff is at most 1{2, since each agent can get a payoff of at most 0
in the low state and 1 in the high state. Under the strategy profile in Proposition 3,
the expected payoff to every agent nearly achieves this upper bound.

E No spontaneous adoption on trees

We will say that a strategy σi for agent i satisfies no spontaneous adoption if for every
t ě 1 and every history hi

t in which none of her neighbors adopts in period t ´ 1,
agent i does not adopt in period t, and we will say that a strategy profile satisfies no
spontaneous adoption if every agent’s strategy satisfies no spontaneous adoption.

Proposition 4. If G is a tree, then every equilibrium satisfies no spontaneous adop-
tion.

Another useful fact is that if G is a tree, then seeing a neighbor adopt is always
evidence that the state is high. For any strategy profile τ , define the strategy profile
τ i to be the one under which all agents except i use the same strategy, and agent i

uses the strategy under which they never adopt. Observe that in order for τ to be an
equilibrium, τi must be an optimal stopping time with respect to si and pτ ijqjPNi

.
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Lemma 5. Suppose G is a tree and agents follow an equilibrium strategy profile τ .
If agent j observes agent i, then

Prτ ij “ t | θ “ Hs ě Prτ ij “ t | θ “ Ls.

Proof. First, since agent j’s adoption decision at time 0 depends only on her signal,
Prτ ij “ 0 | θs “ Prτj “ 0 | θs, so by Lemma 3,

Prτ ij “ 0 | θ “ Hs ě Prτ ij “ 0 | θ “ Ls.

Now, suppose the claim holds for all t1 ă t. Observe that agent j’s action at time t is a
function of sj and 1pτ jk “ t1q for k P Nj and t1 ă t. Moreover, since G is a tree, si and
pτ jkq are conditionally independent random variables. Let H “ p1pτ jk “ t1qqkPNjzi,t1ăt,
and let hj

t and sj be such under τ , agent i does not adopt before t and agent j adopts
at t. Then

1 ď
Prθ “ H | τ ji ě t,H, sjs

Prθ “ L | τ ji ě t,H, sjs

“
Prτ ji ě t | θ “ Hs ¨ Prθ “ H |H, sjs

Prτ ji ě t | θ “ Ls ¨ Prθ “ L |H, sjs

ď
Prθ “ H |H, sjs

Prθ “ L |H, sjs
¨

By the law of iterated expectations, it follows that

Prθ “ H | τ ij “ ts ě Prθ “ L | τ ij “ ts,

and the result then follows.

An important corollary is that when G is a tree, seeing more neighbors adopt is
always stronger evidence that the state is high.

Lemma 6. Suppose G is a tree and agents follow an equilibrium strategy profile τ .
Fix a time t, let si be a private signal and let phi

1, h
i
2, . . .q and ph̄i

1, h̄
i
2, . . .q be histories

such that hi
t “ h̄i

t, such that i does not adopt before t ` 1 under either history, and
such that the set of i’s neighbors who adopt in period t in hi is a subset of the set of
neighbors who adopt in period t in h̄i. Then

Prθ “ H | h̄i
t`1, sis ě Prθ “ H |hi

t`1, sis.
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Proof. To begin, note that the claim holds if and only if

Prθ “ H | h̄i
t`1, sis

Prθ “ L | h̄i
t`1, sis

ě
Prθ “ H |hi

t`1, sis

Prθ “ L |hi
t`1, sis

if and only if

Prθ “ H | h̄i
t`1, sis{Prθ “ L | h̄i

t`1, sis

Prθ “ H |hi
t`1, sis{Prθ “ L |hi

t`1, sis
ě 1.

Now,

Prθ “ H | h̄i
t`1, sis{Prθ “ L | h̄i

t`1, sis

Prθ “ H |hi
t`1, sis{Prθ “ L |hi

t`1, sis
“

Prh̄i
t`1 | θ “ Hs{Prh̄i

t`1 | θ “ Ls

Prhi
t`1 | θ “ Hs{Prhi

t`1 | θ “ Ls

“
ź

jPS

Prτ ij “ t | θ “ Hs{Prτ ij “ t | θ “ Ls

Prτ ij ą t | θ “ Hs{Prτ ij ą t | θ “ Ls

where the last equality follows from conditional independence of the τ ij. By Lemma 5,
every term in this product is at least 1, and the result then follows.

Proof of Proposition 4. Suppose not. Then there is an equilibrium strategy profile τ ,
an agent i, and a history hi

t`1 such that none of i’s neighbors adopts in period t but
i adopts in period t ` 1 with nonzero probability.

Let h̄i
t`1 be a history such that h̄i

t “ hi
t, let S be the set of i’s neighbors who adopt

at time t under h̄i
t`1, and let T be the set of i’s neighbors who do not adopt by time

t under h̄i
t`1. Suppose S ‰ H. Observe that among continuation strategies for agent

i after hi
t`1 which depend only on the actions of agents in T , adopting in period t` 1

must be optimal, since adopting in period t ` 1 is optimal among all continuation
strategies. Now, by Lemma 6,

Prθ “ H | h̄i
t`1, sis ě Prθ “ H |hi

t`1, sis,

and so adopting in period t ` 1 must be optimal among continuation strategies after
h̄i
t`1 which depend only on the actions of agents in T . Since all strategies take this

form, it follows that it is optimal for agent i to adopt in period t ` 1, contradiction.
Hence, it must be that agent i adopts in period t ` 1 under every continuation of

hi
t. But in this case, switching to adopting in period t improves agent i’s expected

utility by a factor of δ, contradiction. Thus, the probability that agent i adopts in
period t ` 1 following any history where none of her neighbors adopts in period t is
zero.
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F Proof of Lemma 1

Lemma 7. Let S,B be binary random variables taking values in t0, 1u, and denote
by νs be the distribution of B conditioned on S “ s. For γ ą 1, if PrB “ 1 |S “

1sγ ď PrB “ 1 |S “ 0s ď PrB “ 1 |S “ 1s
1
γ , then

DKLpν1|ν0q ď 2γ.

Proof. Recall that

DKLpν1|ν0q “
ÿ

bPt0,1u

PrB “ b |S “ 1s ¨ log

ˆ

PrB “ b |S “ 1s

PrB “ b |S “ 0s

˙

.

To bound the first term, observe that

PrB “ 0 |S “ 1s

PrB “ 0 |S “ 0s
“

1 ´ PrB “ 1 |S “ 1s

1 ´ PrB “ 1 |S “ 0s
ď

1 ´ PrB “ 1 |S “ 1s

1 ´ PrB “ 1 |S “ 1s
1
γ

ď γ,

so

PrB “ 0 |S “ 1s ¨ log

ˆ

PrB “ 0 |S “ 1s

PrB “ 0 |S “ 0s

˙

ď logpγq

To bound the second term, observe that

log

ˆ

PrB “ 1 |S “ 1s

PrB “ 1 |S “ 0s

˙

ď log

ˆ

PrB “ 1 |S “ 1s

PrB “ 1 |S “ 1sγ

˙

“ pγ ´ 1q ¨ ´ logpPrB “ 1 |S “ 1sq,

so

PrB “ 1 |S “ 1s ¨ log

ˆ

PrB “ 1 |S “ 1s

PrB “ 1 |S “ 0s

˙

ď pγ ´ 1q ¨ r´PrB “ 1 |S “ 1s ¨ logpPrB “ 1 |S “ 1sqs

ď γ ´ 1.

Hence,

DKLpν1|ν0q ď logpγq ` γ ´ 1 ď 2γ.

In order to apply Lemma 7 to the setting in Lemma 1, we will make use the
following analytical observation.
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Lemma 8. Let α ą 1 and x, y P p0, 1q. If y ě 1
α

¨ x and 1 ´ y ď α ¨ p1 ´ xq, then

y ě x
logp1`αq

logp1` 1
α q .

Proof. Let fptq “ maxp 1
α
t, 1 ´ α ` αtq and gptq “ t

logp1`αq

logp1` 1
α q . Observe that

fp0q “ 0 “ gp0q

fp
α

1 ` α
q “

1

1 ` α
“ gp

α

1 ` α
q

fp1q “ 1 “ gp1q.

Since logp1`αq

logp1` 1
α

q
ą 1, g is convex. Moreover, since f is linear on r0, α

1`α
s and on r α

1`α
, 1s,

it follows that fptq ě gptq for t P r0, 1s. Hence, y ě fpxq ě gpxq “ x
logp1`αq

logp1` 1
α q .

Proof of Lemma 1. Let α “ 1´ε
ε

. Observe that

α ¨ PrBi “ 1 |S “ 1s ě PrBi “ 1 |S “ 0s ě
1

α
¨ PrBi “ 1 |S “ 1s.

It follows from Lemma 8 that

PrBi “ 1 |S “ 1s
γ

ď PrBi “ 1 |S “ 0s ď PrBi “ 1 |S “ 1s
1
γ ,

where γ “
logp1`αq

logp1` 1
α

q
“

logpεq

logp1´εq
.

Now, since the Bi are conditionally independent,

PrB “ 1 |S “ ss “
ź

PrBi “ 1 |S “ ss

for s P t0, 1u. Hence,

PrB “ 1 |S “ 1s
γ

ď PrB “ 1 |S “ 0s ď PrB “ 1 |S “ 1s
1
γ .

The result now follows from Lemma 7.

G Proof of Theorem 2

In this section, we prove Theorem 2. Note that Theorem 1 is an immediate corollary.
We assume throughout this section that the private signals induce beliefs in rε, 1´

εs, and we denote α “ 1´ε
ε

. Note that for any subset A P r0, 1s,

1

α
ď

Prsi P A | θ “ Hs

Prsi P A | θ “ Ls
ď α.
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Define

IpXq “ Erlogp
PrX | θ “ Hs

PrX | θ “ Ls
q | θ “ Hs

and

IpX |Y q “ Erlogp
PrX |Y, θ “ Hs

PrX |Y, θ “ Ls
q | θ “ Hs.

Note that IpXq is the Kullback-Leibler divergence between the distribution of X in
the high state and the low state.

We begin by using Ipτiq to provide a quantitative bound on the probability that
agent i is eventually correct.

Lemma 9. In any equilibrium, the probability pi that agent i is eventually correct is
at most 1 ´ 1

2
e´Ipτiq´3.

Proof. Let η “ 1 ´ pi. Observe that Prτi ă 8 | θ “ Ls ď 2η and Prτi “ 8 | θ “ Hs ď

2η. Hence,

Ip1pτi “ 8qq

“ Prτi ă 8 | θ “ Hs ¨ logpPrτi ă 8 | θ “ Hsq ´ Prτi ă 8 | θ “ Hs ¨ logpPrτi ă 8 | θ “ Lsq

` Prτi “ 8 | θ “ Hs ¨ logpPrτi “ 8 | θ “ Hsq ´ Prτi “ 8 | θ “ Hs ¨ logpPrτi “ 8 | θ “ Lsq

ě ´1 ` p1 ´ 2ηq ¨ ´ logp2ηq ` ´1 ` 0

ě ´3 ´ logp2ηq,

and thus,

pi “ 1 ´ η ď 1 ´
1

2
¨ e´Ip1pτi“8qqq´3.

Since 1pτi “ 8q is a function of τi, Ip1pτi “ 8qq ď Ipτiq, and the result then
follows.

In order to prove Theorem 2, we will prove an auxiliary result on rooted, directed
trees. Let T be a rooted, directed tree with finitely many ends, and let psiqiPT be
conditionally iid with Prθ “ H | sis P rε, 1 ´ εs. An adoption process associated to T

is a choice of adoption time τi associated to each vertex i such that τi is a function
of si and pτjqNT piq, τi satisfies no spontaneous adoption, and for any t, Prτi “ t | θ “

Hs ě Prτi “ t | θ “ Ls. We denote by τr the adoption time of the root.
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Proposition 5. There is a c0 such that for any rooted tree T with one end and any
associated adoption process, Ipτrq ď c0.

Proof. Label each vertex in T by the distance from the root, so that the root is labeled
0, its child is labeled 1, and so on.

Let τ̃ “ minti : τi “ 0u, where τ̃ “ 0 if τi ‰ 0 for all i. Observe that by no
spontaneous adoption, τ0 P tτ̃ ,8u. It follows that τ is a function of τ̃ and 1pτ0 “ τ̃q,
so

Ipτ0q ď Ipτ̃ ,1pτ0 “ τ̃qq

“ Ipτ̃q ` Ip1pτ0 “ τ̃q | τ̃q.

We begin by bounding Ipτ̃q. Observe that because agents only adopt when believe
the state is more likely to be high, Prτi ‰ 0 | θ “ Hs ď Prτi ‰ 0 | θ “ Ls. Since τ̃ “ t

if and only if τi ‰ 0 for 0 ď i ă t and τt “ 0, it follows that

Prτ̃ “ t | θ “ Hs

Prτ̃ “ t | θ “ Ls
ď

Prτt “ 0 | θ “ Hs

Prτt “ 0 | θ “ Ls
ď α.

Hence, Ipτ̃q ď logpαq.
Next, we bound Ip1pτ0 “ τ̃q | τ̃q. For 0 ď i ă τ̃ , define Bi to be 1 if agent i

receives a private signal for which they adopt at time t´ i if agent agent i` 1 adopts
at time t ´ pi ` 1q, and 0 otherwise. Define B “

ś

Bi. Observe that if τ̃ ‰ 8, then
τ0 “ τ̃ if and only if B “ 1. Moreover, note that

PrBi “ 1 | τ̃ “ t, θ “ Hs

PrBi “ 1 | τ̃ “ t, θ “ Ls
“

PrBi “ 1 | τi ‰ 0, θ “ Hs

PrBi “ 1 | τi ‰ 0, θ “ Ls

“
PrBi “ 1 | θ “ Hs

PrBi “ 1 | θ “ Ls
¨
Prτi ‰ 0 | θ “ Ls

Prτi ‰ 0 | θ “ Hs
¨

Since this is bounded between 1
α2 and α2, it follows that Prθ “ H | τ̃ “ t, Bi “ 1s P

r 1
α2`1

, 1 ´ 1
α2`1

s. Hence, by Lemma 1,

Ip1pτ0 “ τ̃q | τ̃q ď 2 ¨
logp 1

α2`1
q

logp1 ´ 1
α2`1

q
ď 4α2 logpα2

` 1q.

It follows that Ipτ0q ď logpαq ` 4α2 logpα2 ` 1q.
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Proposition 6. There is a D such that for any T be a rooted tree with k ą 1

ends and any associated adoption process, if the root has one child, then Ipτrq ď

logpαq ` D ` Ipτiq, where i is the first descendant of the root with more than one
child.

Proof. Let j be the distance from the root to the first descendant with more than one
child, and label each between the root and this child by the distance from the root.

Define τ̃ as follows. If τi “ 0 for some i ă j, then τ̃ is the smallest such i.
Otherwise, τ̃ “ τj ` j. Observe that as in the proof of Proposition 5, either τ0 “ τ̃ or
τ0 “ 8. As before,

Ipτ0q ď Ipτ̃ ,1pτ0 “ τ̃qq

“ Ipτ̃q ` Ip1pτ0 “ τ̃q | τ̃q.

Note that as in the previous argument, Ipτ̃q ď maxplogpαq, Ipτjqq. Moreover, by
the same argument,

Ip1pτ0 “ τ̃q | τ̃q ď 4α2 logpα2
` 1q.

It follows that

Ipτ0q ď maxplogpαq, Ipτjqq ` 4α2 logpα2
` 1q

ď Ipτjq ` logpαq ` 4α2 logpα2
` 1q.

Fix c0 as in the first proposition and D as in the second proposition. Define
c1 “ maxpc0, logpαq, Dq and C1 “ c1. For k ą 1, define ck “ pk ` 1q ¨ Ck´1 and
Ck “ ck ` logpαq ` D.

Proposition 7. For any rooted tree T with k ends and any associated adoption pro-
cess, Ipτrq ď Ck.

Proof. We will prove by induction that if the root has more than one child, then
Ipτrq ď ck, and if the root has one child then Ipτrq ď Ck. Since ck ă Ck, the result
then follows.

First, observe that if k “ 1, then the claim follows from Proposition 5. So let
k ą 1, and assume the claim holds for k1 ă k.
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First, observe that if the root has more than one child, then

Ipτrq ď Ipsrq `
ÿ

iPNT prq

Ipτiq.

Let ki be the number of ends of the subtree with root i. By assumption,

Ipτiq ď Cki .

Hence, it follows that

Ipτrq ď logpαq `
ÿ

iPNT prq

Cki

ď logpαq ` |NT prq| ¨ Ck´1

ď logpαq ` k ¨ Ck´1

ď pk ` 1q ¨ Ck´1

“ ck.

Now, suppose the root has one child, and let i be the first descendant of r that has
more than one child. Since the subtree with root i has k ends and i has more than
one child, it follows that Ipτiq ď ck. Hence,

Ipτrq ď Ipsrq ` Ipτiq ` D

ď logpαq ` D ` ck

“ Ck.

Given a strategy profile, observe that the adoption times τi are functions of the
private signals si. Given a pair of agents i and j, we define the auxiliary random
variable τ ij to be the adoption time of agent j under the strategy profile where all
agents but i use the same strategy and agent i uses the strategy under which they
never adopt.

Proof of Theorem 2. Fix a one dimensional network G and an agent i. Let T be the
rooted tree with i as root and j1 a child of j if j is adjacent to j1 and the unique path
from i to j1 in G contains j.
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Given an equilibrium τ , define the adoption process associated to T as follows.
The adoption time associated i is τi. For all other agents j1, the adoption time
associated to j1 is τ jj1 , where j is the parent of j1 in T .

Observe that T has at most 2MpGq ` 2 ends. It follows that Ipτiq ď C2MpGq`2.
Hence, by the bounding lemma,

pi ď 1 ´
1

2
e´C2MpGq`2´3.

H Outside observer learns from period 0 decisions

Given a strategy profile τ , denote by pO “ Prθ “ H | p1pτi “ 0qqiPN s the belief of
an outside observer after seeing the agents’ period 0 decisions. We will say that an
outside observer learns immediately from τ if

PrpO “ 1 | θ “ Hs “ PrpO “ 0 | θ “ Ls “ 1.

Proposition 8. If G is an infinite undirected tree of bounded degree, then an outside
observer learns immediately from any equilibrium strategy profile τ on G.

We will use the following result, which says that an outside observer learns imme-
diately whenever there are infinitely many agents whose period 0 adoption thresholds
are uniformly bounded away from b.

Lemma 10. Let G be an infinite network and τ an equilibrium strategy profile. If
there is an η ą 0 such that Prτi “ 0 | θ “ Hs ě η for infinitely many agents i, then
an outside observer learns immediately from τ .

Proof. Let

ε “ min

ˆ

η

α
, Prπi ă

1

2
| θ “ Hs,

Prπi ě 1
2

| θ “ Hs

Prπi ě 1
2

| θ “ Ls
´ 1

˙

.

Observe that

Prτi “ 0 | θ “ Ls ě
1

α
¨ Prτi “ 0 | θ “ Hs ě

1

α
¨ η ě ε,

Prτi ą 0 | θ “ Hs ě Prπi ă
1

2
| θ “ Hs ě ε,
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and

Prτi “ 0 | θ “ Hs

Prτi “ 0 | θ “ Ls
ě

Prπi ě 1
2

| θ “ Hs

Prπi ě 1
2

| θ “ Ls
ě 1 ` ε,

where the first inequality follows from the definition of α and the second and third
follow from the fact that agents use threshold strategies in equilibrium. Hence, if
Prτi “ 0 | θ “ Hs ě η, then

ε ď Prτi “ 0 | θ “ Ls “ 1 ´ Prτi ą 0 | θ “ Ls ď 1 ´ Prτi ą 0 | θ “ Hs ď 1 ´ ε,

ε ď Prτi “ 0 | θ “ Ls ď Prτi “ 0 | θ “ Hs “ 1 ´ Prτi ą 0 | θ “ Hs ď 1 ´ ε,

and

Prτi “ 0 | θ “ Hs ě p1 ` εq ¨ Prτi “ 0 | θ “ Hs.

Now, fix q P p1
2
, 1q, and let m be as in Proposition 11, and let S be any finite subset

of agents such that |S| ě m and Prτi “ 0 | θ “ Hs ě η for every agent i P S. Denote
by pS an outside observer’s posterior after seeing the period 0 adoption decisions of
agents in S. Then

PrpS ě q | θ “ Hs ě q

and

PrpS ď 1 ´ q | θ “ Ls ě q.

Now, ErpO | pSs “ pS, so by Markov’s inequality, if pS ě q, then

Pr1 ´ pO ě
a

1 ´ q | pSs ď
1 ´ pS
?
1 ´ q

ď
a

1 ´ q,

and if pS ď 1 ´ q, then

PrpO ďě
a

1 ´ q | pSs ď
pS

?
1 ´ q

ď
a

1 ´ q.

Thus, if maxppS, 1 ´ pSq ě q, then

PrmaxppO, 1 ´ pOq ď 1 ´
a

1 ´ q | pSs ď
a

1 ´ q.
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Now,

PrmaxppS, 1 ´ pSq ă q | θ “ Hs ď PrpS ă q | θ “ Hs ď 1 ´ q

and

PrmaxppS, 1 ´ pSq ă q | θ “ Ls ď PrpS ą 1 ´ q | θ “ Ls ď 1 ´ q,

so PrmaxppS, 1´ pSq ă qs ď 1´ q. It follows that PrmaxppO, 1´ pOq ě qs ě p1´ qq
3
2 .

Since q was arbitrary, it follows that PrmaxppO, 1 ´ pOq “ 1s “ 1, and since
PrpO “ 1 | θ “ Ls “ PrpO “ 0 | θ “ Hs “ 0, the result then follows.

Proof of Proposition 8. Fix δ P p0, 1q, and let τ be an equilibrium for the discount
factor δ on G. Let d be the maximum degree of any agent in G.

Let ρ P p0, 1q and T ě 1 such that 1
2´ρ¨δT

ă b. Observe that for any agent i, if no
agent within distance T of i adopts in period 0, then by Proposition 4, agent i does
not adopt before period T . It follows that if the probability that no agent within
distance T of agent i (other than i) adopts in period 0 in the high state is at least ρ,
then agent i’s expected utility from not adopting in period 0 is less than πi ¨ ρ ¨ δT .
Hence, if πi ě 1

2´ρ¨δT
, then agent i must adopt in period 0. Let

q “ Prπi ě
1

2 ´ ρ ¨ δT
| θ “ Hs

be the probability than an agent’s private belief is above this threshold in the high
state.

Denote by Ai the event that at least one agent within a distance T of agent i

(including agent i) adopts in period 0. It follows from above that PrAc
i | θ “ Hs ď

maxpρ, 1´ qq. Now, since there are at most dT`1 agents within a distance T of agent
i, it follows that there must be at least one agent j within distance T of agent i

such that Prτj ą 0 | θ “ Hs ď maxpρ, 1 ´ qq
1

dT`1 , and hence Prτj “ 0 | θ “ Hs ě

1 ´ maxpρ, 1 ´ qq
1

dT`1 .
Finally, let pinq be an infinite sequence of agents such that dGpim, inq ą 2T for

each m,n, and let pjnq be a sequence of agents such that for each n, dGpin, jnq ď T

and Prτjn “ 0 | θ “ Hs ě 1 ´ maxpρ, 1 ´ qq
1

dT`1 . The result then follows from
Lemma 10.
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I Proof of Theorem 3

I.1 Auxiliary Continuous Time Model

In this section we describe a continuous time decision making model that will be a
useful tool for proving Theorem 3.

The initial setup is as in our main model: there is a state θ P tH,Lu distributed
uniformly. Private signals are denoted si and take values in some measurable Si.
Private beliefs are πi “ Prθ “ H | sis, πi is almost surely in ra, bs for some 0 ă a ă

b ă 1, and the distribution of πi is not a point mass at the prior 1{2. Agents can
make irreversible adoption decisions. Not adopting yields a flow utility of 0. Adopting
yields a flow utility of 2 if the state is high, and ´2 if the state is low.

Hereon, the auxiliary model deviates from our main model. Time is continuous
and takes values in r0, 1s. The total utility from adopting at time t P r0, 1s is p1´ tq if
the state is high and ´p1 ´ tq if the state is low. Note that adopting at time 1 yields
utility 0 regardless of the state.

The relation to our main model is as follows: for a given discount factor δ ă 1,
the discrete time t of our main model is reparameterized by t ÞÑ 1 ´ δt. That is,
adopting in discrete t P t0, 1, 2, . . .u, corresponds to adopting in continuous time in
t0, 1 ´ δ, 1 ´ δ2, . . .u Ă r0, 1s. We choose to discount by 1 ´ t in the continuous time
model precisely because the reparametrization t ÞÑ 1 ´ δt transforms exponential
discounting by δt to discounting by 1 ´ t.

There is only one agent, the root agent or agent 0. In addition to its private signal
s0 which it observes at time t “ 0, the root agent observes two random variables τ1, τ2,
taking values in r0, 1s. We think of these random variables as the adoption times of
the root’s children. We assume that they satisfy

Prτi P T | θ “ Hs ě Prτi P T | θ “ Ls for all measurable T Ă r0, 1q. (1)

Since the continuous time t “ 1 corresponds to time infinity in the discrete time
model, we think of τi “ 1 as non-adoption. Hence, this condition is a monotonicity
condition stating that adoption (at any time strictly before t “ 1) is more likely in the
high state than the low state. As we shall see, this is satisfied by an optimizing agent.
However, in this auxiliary model the children will have exogenously fixed behavior
captured by τ1 and τ2. We assume that the joint distributions of pτ1, θq and pτ2, θq
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coincide and that τ1 and τ2 are independent conditional on θ. This will allow us to
think of the two children as participating in a symmetric equilibrium.

Denote by µ the joint distribution of pτ1, θq. Since τ1 takes values in r0, 1s and θ

takes values in tH,Lu, µ is an element of ∆pr0, 1s ˆ tH,Luq. Note that this set of
probability measures is compact in the weak topology, since r0, 1sˆtH,Lu is compact.
Denote by µH , µL P ∆pr0, 1sq the distributions of τ1 conditioned on θ. Since in this
auxiliary model we think of adopting at time t “ 1 as not adopting, the event that
child 1 is eventually correct is the event r0, 1q ˆ tHu Y tp1, Lqu Ă r0, 1s ˆ tH,Lu, and
the probability that it is eventually correct is 1

2
µHpr0, 1qq ` 1

2
µLpt1uq. The condition

of (1) can be written in terms of µ as

µHpT q ě µLpT q for all measurable T Ă r0, 1q. (2)

The expected discounted utility of each of the children is given by

upµq “

ż 1

0

p1 ´ tq dµHptq ´

ż 1

0

p1 ´ tq dµLptq.

Note that the map u : ∆pr0, 1s ˆ tH,Luq Ñ r0, 1s is continuous.
We represent the strategy of the root agent by a map a : r0, 1s3 Ñ r0, 1s. This map

calculates the root agent’s adoption time, given its private belief and the adoption
times of the children:

τ0 “ apπ0, τ1, τ2q.

Given a strategy a and the distribution µ describing the children’s behavior, we
denote by wµpaq the root agent’s expected utility. Formally, if denote by νL and νH

the conditional distributions of the private belief π0, then

wµpaq “

ż

p1 ´ apπ, t1, t2qq dνHpπqdµHpt1qdµHpt2q ´

ż

p1 ´ apπ, t1, t2qq dνLpπqdµLpt1qdµLpt2q.

As explained above, we consider two families of strategies, each indexed by r P

r0, 1s:

a1,rpπ0, τ1, τ2q “

$

&

%

τ1 if τ1 ą r

maxtτ2, ru if τ1 ď r

a2,rpπ0, τ1, τ2q “

$

&

%

r if τ1 ą r, τ2 ď r, π0 ą 1{2

τ1 otherwise.
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Denote this family of strategies by A “ tai,r : i P t1, 2u, r P r0, 1su. Our next result
shows that if the children have positive expected utility, and if they are not always
eventually correct, then the root agent has a strategy in A that yields higher expected
utility than the children. Note that both conditions are necessary for this conclusion.

Define

ηpµq “ min

"

upµq,
1

2
µH

`

t1u
˘

`
1

2
µL

`

r0, 1q
˘

*

Note that the second term is a child’s probability of not being eventually correct.

Proposition 9. If ηpµq ą 0, then there exists a strategy a P A such that wµpaq ą

upµq.

Proof. First, we claim that we can assume that p0, Hq P supppµq. Otherwise, we can
replace 0 and ε in the proof with r and r ` ε, where r ą 0 is the smallest number
such that pr,Hq P supppµq; the same proof still goes through. As above, we denote
by νH and νL the conditional distributions of π0.

We consider a number of cases.

Case 1. With positive probability τ1 “ 0, so that in particular µHp0q ą 0. We
break this into the following two subcases.

Case 1.1. µHp0q “ µLp0q. Denote by c “ pµHp0q ` µLp0qq{2 the probability that
τ1 “ 0. In this case, conditioned on τ1 “ 0, both states are equally likely, and hence
the conditional expected utility of the child is zero. Hence conditioned on τ1 ą 0, the
conditional expected utility of the child is upµq{p1 ´ cq.

Consider the strategy a1,0: follow child 1 if τi ą 0 and follow child 2 otherwise.
Then this strategy will yield expected utility

wµpa1,0q “ p1 ´ cq
upµq

1 ´ c
` cupµq “ p1 ` cqupµq ą upµq.

Case 1.2. µHp0q ą µLp0q. The utility of the strategy a1,0 is

wµpa1,0q “µHp0q

ż

r0,1s

p1 ´ tq dµH `

ż

r0,1s

p1 ´ tq dµH ´ µHp0q

´

ˆ

µLp0q

ż

r0,1s

p1 ´ tq dµL `

ż

r0,1s

p1 ´ tq dµL ´ µLp0q

˙

“upµq ´

„

µHp0q

ˆ

1 ´

ż

r0,1s

p1 ´ tq dµH

˙

´ µLp0q

ˆ

1 ´

ż

r0,1s

p1 ´ tq dµL

˙

.
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Denote by pH “ νH pp1{2, 1sq the probability that the root agent’s private belief
π0 is larger than 1{2 in the high state, and define pL analogously. Then the expected
utility of the strategy a2,0 is

wµpa2,0q “pH ¨ µHp0q ` r1 ´ pH ¨ µHp0qs

ż

r0,1s

p1 ´ tq dµH

´

ˆ

pL ¨ µLp0q ` r1 ´ pL ¨ µLp0qs

ż

r0,1s

p1 ´ tq dµL

˙

“upµq ` pH ¨ µHp0q

„

1 ´

ż

r0,1s

p1 ´ tq dµH



´ pL ¨ µLp0q

„

1 ´

ż

r0,1s

p1 ´ tq dµL



.

If µLp0q

´

1 ´
ş1

0
p1 ´ tq dµL

¯

ą µHp0q

´

1 ´
ş

r0,1s
p1 ´ tq dµH

¯

, then a1,0 will make the
root agent better off than her children. Otherwise, we have

µHp0q

„

1 ´

ż

r0,1s

p1 ´ tq dµH



ě µLp0q

„

1 ´

ż

r0,1s

p1 ´ tq dµL



so that

pH ¨ µHp0q

„

1 ´

ż

r0,1s

p1 ´ tq dµH



ą pL ¨ µLp0q

„

1 ´

ż

r0,1s

p1 ´ tq dµL



since pH ą pL, as the root agent’s signal is informative. Hence a2,0 will make the root
agent better off than her children.

Case 2. Having considered these cases, we can assume henceforth that τ1 “ 0 with
probability zero. Hence µHp0q “ 0 and limεÓ0 µHpr0, εsq “ 0. Let ε ą 0.

42



We first analyze the strategy a1,ε. We have

wµpa1,εq “µHpr0, εsq

ż

pε,1s

p1 ´ tq dµH `

ż

pε,1s

p1 ´ tq dµH

´ µLr0, εs

ż

pε,1s

p1 ´ tq dµL ´

ż

pε,1s

p1 ´ tq dµL

` p1 ´ εq
`

µHpr0, εsq
2

´ µLpr0, εsq
2
˘

ěupµq ´

ż

r0,εs

p1 ´ tq dµH `

ż

r0,εs

p1 ´ tq dµL

` µHpr0, εsq

ż

pε,1s

p1 ´ tq dµH ´ µLpr0, εsq

ż

pε,1s

p1 ´ tq dµL

“upµq ´ µHpr0, εsq

„

1 ´

ż

pε,1s

p1 ´ tq dµH



` µLpr0, εsq

„

1 ´

ż

pε,1s

p1 ´ tq dµL



`

ˆ
ż

r0,εs

t dµH ´

ż

r0,εs

t dµL

˙

ěupµq ´ µHpr0, εsq

„

1 ´

ż

pε,1s

p1 ´ tq dµH



` µLpr0, εsq

„

1 ´

ż

pε,1s

p1 ´ tq dµL



.

We proceed to the second strategy a2,ε:

wµpa2,εq “pH ¨ µHpr0, εsqµHpr0, 1 ´ εsqp1 ´ εq `

ż

r0,εs

p1 ´ tq dµH

` r1 ´ pH ¨ µHpr0, εsqs

ż

pε,1s

p1 ´ tq dµH

´ pL ¨ µLpr0, εsqµLpr0, 1 ´ εsqp1 ´ εq `

ż

r0,εs

p1 ´ tq dµL

` r1 ´ pL ¨ µLpr0, εsqs

ż

pε,1s

p1 ´ tq dµL

“upµq ` pH ¨ µHpr0, εsq

ˆ

µHpr0, 1 ´ εsqp1 ´ εq ´

ż

pε,1s

p1 ´ tq dµH

˙

´ pL ¨ µLpr0, εsq

ˆ

µLpr0, 1 ´ εsqp1 ´ εq ´

ż

pε,1s

p1 ´ tq dµL

˙

.

Note that

lim
εÓ0

1 ´
ş

pε,1s
p1 ´ tq dµH

1 ´
ş

pε,1s
p1 ´ tq dµL

“
1 ´

ş

r0,1s
p1 ´ tq dµH

1 ´
ş

r0,1s
p1 ´ tq dµL

“ lim
εÓ0

µHpr0, 1 ´ εsqp1 ´ εq ´
ş

pε,1s
p1 ´ tq dµH

µLpr0, 1 ´ εsqp1 ´ εq ´
ş

pε,1s
p1 ´ tq dµL

.

Since the root agent’s signal is informative, pH ą pL, and so whenever ε is small
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enough, we must have one of the following is true: either

pH ¨ µHpr0, εsq

ˆ

µHpr0, 1 ´ εsqp1 ´ εq ´

ż

pε,1s

p1 ´ tq dµH

˙

ě pL ¨ µLpr0, εsq

ˆ

µLpr0, 1 ´ εsqp1 ´ εq ´

ż

pε,1s

p1 ´ tq dµL

˙

,

or
µLpr0, εsq

„

1 ´

ż

pε,1s

p1 ´ tq dµL



ě µHpr0, εsq

„

1 ´

ż

pε,1s

p1 ´ tq dµH



.

This translates to wµpa2,εq ą upµq or wµpa1,εq ą upµq.

Define Ψpµq “ supaPAwµpaq. Note that Ψ provides a lower bound on the root’s
maximum expected utility when the children’s adoption times follow µ. As the above
Proposition shows, if ηpµq ą 0 then Ψpµq ą upµq. However, we will need a stronger
quantitative result. For ε P p0, 1q, let

Cε “ inf
µ : ηpµqěε

Ψpµq

upµq
¨

This captures the guaranteed improvement factor of the root’s utility over the chil-
dren’s utility, given that the distribution of their adoption times µ satisfies ηpµq ą ε,
i.e., that their expected discounted utility is at least ε and their probability of not
being eventually correct is at least ε.

Proposition 10. Cε ą 1 for all ε P p0, 1q.

We will require a few lemmas to prove this claim.
For any distributions µ, µ1, we denote by DT pµ, µ1q the transportation metric given

by the minimum of Er|τ ´ τ 1|s taken over all pairs of random variables τ, τ 1 dis-
tributed µ, µ1 respectively. We recall that this distance metrizes the weak topology,
i.e., limn µn “ µ if and only if limnDT pµn, µq “ 0.

Lemma 11. Fix µ, µ1. For any ε P p0, 1q, i P t1, 2u, and r P r0, 1s, if DT pµ, µ1q ă ε2

then

|wµpai,rq ´ wµ1pai,rq| ď 2 ¨ µ
`

rr ´ ε, r ` εs ˆ tL,Hu
˘

` 3 ¨ ε.

Proof. Let τ1, τ2 each have law µ and τ 1
1, τ

1
2 each have law µ1, with Er|τj ´ τ 1

j|s ă ε2

for j “ 1, 2. Let τ “ ai,rpπ0, τ1, τ2q and τ 1 “ ai,rpπ0, τ
1
1, τ

1
2q. Observe that

wµpai,rq ´ wµ1pai,rq “ Erp1pθ “ Hq ´ 1pθ “ Lqq ¨ p1 ´ τqs ´ Erp1pθ “ Hq ´ 1pθ “ Lqq ¨ p1 ´ τ 1
qs

“ Erp1pθ “ Hq ´ 1pθ “ Lqq ¨ pτ 1
´ τqs,
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so

|wµpai,rq ´ wµ1pai,rq| ď Er|p1pθ “ Hq ´ 1pθ “ Lqq ¨ pτ 1
´ τq|s “ Er|τ ´ τ 1

|s.

Let A be the event that |τ1 ´ τ 1
1| ă ε, |τ2 ´ τ 1

2| ă ε, |τ1 ´ r| ą ε, and |τ2 ´ r| ą ε. As
we now show, if A obtains, then |τ ´ τ 1| ă ε. We consider two cases, depending on
whether ai,r “ a1,r or ai,r “ a2,r.

Case 1. i “ 1

If τ1 ą r, then τ 1
1 ą r, so |τ ´ τ 1| “ |τ1 ´ τ 1

1| ă ε. If τ1 ă r and τ2 ă r, then
|τ ´ τ 1| “ |τ2 ´ τ 1

2| ă ε. If τ1 ă r and τ2 ą r, then |τ ´ τ 1| “ |r ´ r| “ 0.

Case 2. i “ 2

Observe that τ1 ą r and τ2 ď r if and only if τ 1
1 ą r and τ 1

2 ď r. Hence, either
|τ ´ τ 1| “ |τ1 ´ τ 1

1| ă ε or |τ ´ τ 1| “ |r ´ r| “ 0.

Hence, since |τ ´ τ 1| ď 1 almost surely, it follows that

|wµpai,rq ´ wµ1pai,rq| ď PrAs ¨ ε ` p1 ´ PrAsq ¨ 1 ď ε ` 1 ´ PrAs.

Observe that by the union bound,

1 ´ PrAs ď Pr|τ1 ´ τ 1
1| ě εs ` Pr|τ2 ´ τ 1

2| ě εs ` Pr|τ1 ´ r| ď εs ` Pr|τ2 ´ r| ď εs.

Now, Pr|τj ´ r| ď εs “ µ
`

pr ´ ε, r ` εq ˆ tL,Hu
˘

, and by Markov’s inequality,

Pr|τj ´ τ 1
j| ě εs ď

Er|τj ´ τ |s

ε
ď

ε2

ε
“ ε.

Hence,

1 ´ PrAs ď 2ε ` 2µ
`

pr ´ ε, r ` εq ˆ tL,Hu
˘

and the result follows.

Lemma 12. Fix µ. For any γ ą 0, there exists i P t1, 2u, r P r0, 1s, and ε ą 0 such
that µptru ˆ tL,Huq “ 0, µ

`

rr ´ ε, r ` εs ˆ tL,Hu
˘

ă γ, and wµpai,rq ą Ψpµq ´ γ.
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Proof. Observe first that wµpa1,1q “ 0 and wµpa2,1q “ upµq. Since Ψpµq ą upµq, it
follows that there is some i P t1, 2u and r P r0, 1q such that wµpai,rq ą Ψpµq ´ 1

2
¨ γ.

Now, let rj be a descending sequence such that µptrjuˆtL,Huq “ 0 and lim rj “ r.
Now, if τ1, τ2 R pr, rjs, then ai,rjpπ0, τ1, τ2q “ ai,rpπ0, τ1, τ2q, i.e., the action taken under
strategy ai,rj and ai,r is the same. In particular, since limj µppr, rjs ˆ tL,Huq “ 0,
this happens with probability tending to one, and so, because payoffs are bounded,
it follows that limj wµpai,rjq “ wµpai,rq.

Choose rj such that wµpai,rjq ą wµpai,rq ´ 1
2

¨ γ. Then wµpai,rjq ą Ψpµq ´ γ. Since
limεÑ0 µ

`

rrj ´ ε, rj ` εs ˆ tL,Hu
˘

“ 0, the result then follows.

Given these lemmas we are ready to prove the proposition

Proof of Proposition 10. Fix ε P p0, 1q, and let C Ď ∆pr0, 1sˆtH,Luq be the set of all
measures µ such that µ satisfies the monotonicity condition (2) and ηpµq ě ε. Observe
that since u is continuous with respect to the weak topology, η is continuous, and since
(2) is a closed condition, it follows that C is closed. Moreover, since ∆pr0, 1sˆtH,Luq

is compact, it follows that C is compact.
Now, Cε “ infµPC

Ψpµq

upµq
by definition, and since Ψpµq ą upµq for all µ P C, it is

sufficient to show that Ψpµq

upµq
achieves its infimum on C, and for this it is sufficient to

show that Ψpµq

upµq
is lower semi-continuous. Moreover, since upµq is continuous, it is

sufficient to show that Ψpµq is lower semi-continuous.
So suppose limn µ

n “ µ. Fix γ ą 0. By Lemma 12, there exist i P t1, 2u and
r P r0, 1s such that for all sufficiently small ζ ą 0, µptru ˆ tL,Huq “ 0, µ

`

rr ´ ζ, r `

ζs ˆ tL,Hu
˘

ă γ, and wµpai,rq ą Ψpµq ´ γ. By Lemma 11, it follows if ζ ă γ is
sufficiently small, then for all sufficiently large n,

Ψpµn
q ě wµnpai,rq

ě wµpai,rq ´ 2 ¨ γ ´ 3 ¨ ζ

ě Ψpµq ´ 6 ¨ γ.

Hence, lim inf Ψpµnq ě Ψpµq ´ 6 ¨ γ. Since this holds for all γ, it follows that
lim inf Ψpµnq ě Ψpµq. Hence, Ψ is lower semi-continuous, and the result follows.

We can now prove Theorem 3.

Proof of Theorem 3. Fix p̄ ă 1. Let u0 be the expected utility from adopting in
period 0 if πi ě 1

2
and never adopting otherwise. Note that u0 ą 0, since signals
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are informative. Let ε “ mint1 ´ p̄, u0u. Fix any discount factor δ ă 1 such that
Cε ¨ δ ą 1.

Suppose towards a contradiction that there is a symmetric equilibrium in which
each agent’s probability of being eventually correct is less than p̄. Fix an agent 0 and
two of its children, 1 and 2. Let τ̃i “ 1´ δτi , and let µ be the distribution of τ̃i. Note
that in equilibrium, Prτi “ t | θ “ Hs ě Prτi “ t | θ “ Ls by Lemma 3, so µ satisfies
the monotonicity condition (2). By the definition of τ̃ , the expected utilities of the
children are exactly equal to the expected utilities upµq in the continuous time model.

Observe first that upµq ě u0, since the strategy described above is always available
and agents are maximizing expected utility. Moreover, since the probability of not
being eventually correct is at least 1 ´ p̄, ηpµq ě ε. Hence, by the definition of Cε,

Ψpµq ě Cε ¨ upµq ą
1

δ
¨ upµq.

In particular, there is some strategy ai,r in the continuous time model such that
wµpai,rq ą 1

δ
¨upµq. Note that τ̃i is supported on t1´δnuně0 Yt1u. Since no additional

information is provided between 1 ´ δn and 1 ´ δn`1, it follows that we can take r to
be in t1 ´ δnuně0 Y t1u, in which case the root agent only takes actions in this set.

Finally, let τ0 “
logp1´ai,rpπ0,τ̃1,τ̃2qq

logpδq
` 1. Observe that τ0 is a valid strategy, since

1pτ0 “ tq depends only on s0 and 1pτi “ t1q for i “ 1, 2 and t1 ă t. Finally, denoting
by ν the distribution of ai,rpπ0, τ̃1, τ̃2q, observe that agent 0’s expected utility is equal
to δ ¨ upνq ą upµq. Since every agent’s expected utility is upµq, it follows that agent
0 is not best responding, contradicting the equilibrium assumption.

Thus, for all δ ą 1
Cε

, every agent’s probability of being eventually correct is at
least p̄ in every symmetric equilibrium.

J Learning from period 0 actions

For several results, it is necessary to establish quantitative bounds on the information
contained in an agent’s period 0 action. Denote by Xj “ 1pτj “ 0q be the indicator
of the event that agent j adopts in period 0, and denote

χj “ log
PrXj | θ “ Hs

PrXj | θ “ Ls
¨

Lemma 13. For any ε ą 0 there exist ρ, ρ1 ą 0 such that if ε ď PrXj “ 1 | θs ď 1´ ε

for θ P tL,Hu and PrXj “ 1 | θ “ Hs ě p1 ` εq ¨ PrXj “ 1 | θ “ Ls, then
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Erχj | θ “ Ls ď ´ρ, Erχj | θ “ Hs ě ρ, and Varrχ | θs ď ρ1.

Since the agents’ period 0 decisions are conditionally independent, this allows us
to establish a quantitative bound on the information from observing many agents’
period 0 actions. For any finite set of agents S denote χS “

ř

jPS χj.

Proposition 11. For any ε ą 0 and q P p1
2
, 1q, there is an m such that if |S| ě m,

ε ď PrXj “ 1 | θs ď 1 ´ ε for θ P tL,Hu and PrXj “ 1 | θ “ Hs ě p1 ` εq ¨ PrXj “

1 | θ “ Ls for every j P S, then

PrχS ě log
q

1 ´ q
| θ “ Hs ě q

and

PrχS ď ´ log
q

1 ´ q
| θ “ Ls ě q.

Proof. Let ρ, ρ1 be as in Lemma 13, and let xθ “ ErχS | θs and vθ “ VarrχS | θs. Then
xH ě |S| ¨ ρ, xL ď ´|S| ¨ ρ, and vθ ď |S| ¨ ρ1, so for any t ă |S| ¨ ρ,

PrχS ă t | θ “ Hs “ PrxH ´ χ ą xH ´ t | θ “ Hs

ď PrpxH ´ χq
2

ą pxH ´ tq2 | θ “ Hs

ď
vH

pxH ´ tq2

ď
|S| ¨ ρ1

p|S| ¨ ρ ´ tq2
,

and by an analogous calculation,

PrχS ą ´t | θ “ Ls ď
|S| ¨ ρ1

p|S| ¨ ρ ´ tq2
¨

Now, taking t “ log q
1´q

, t ă m ¨ ρ for all sufficiently large m and

lim
mÑ8

m ¨ ρ1

pm ¨ ρ ´ tq2
“ 0.

Hence, there is an m such that if |S| ě m then t ď |S| ¨ ρ and

|S| ¨ ρ1

p|S| ¨ ρ ´ tq2
ď q,

the result then follows.
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Proof of Lemma 13. Let

fHpp, qq “ p1 ´ pq ¨ log

ˆ

1 ´ p

1 ´ q

˙

` p ¨ log

ˆ

p

q

˙

fLpp, qq “ p1 ´ qq ¨ log

ˆ

1 ´ p

1 ´ q

˙

` q ¨ log

ˆ

p

q

˙

gHpp, qq “ p1 ´ pq ¨

ˆ

log

ˆ

1 ´ p

1 ´ q

˙

´ fHpp, qq

˙2

` p ¨

ˆ

log

ˆ

p

q

˙

´ fHpp, qq

˙2

gLpp, qq “ p1 ´ qq ¨

ˆ

log

ˆ

1 ´ p

1 ´ q

˙

´ fLpp, qq

˙2

` q ¨

ˆ

log

ˆ

p

q

˙

´ fLpp, qq

˙2

.

Further, let Z “ tpp, qq : p, q P rε, 1 ´ εs, p ě p1 ` εq ¨ qu. By Jensen’s inequality,
fHpp, qq ą 0 and fLpp, qq ă 0 for all pp, qq P Z. Since fL, fH , gL, and gH are
continuous and Z is closed, it follows that there are ρ, ρ1 ą 0 such that fLpp, qq ď ´ρ,
fHpp, qq ě ρ, gLpp, qq ď ρ1, and gHpp, qq ď ρ1 for all pp, qq P Z. The result then
follows, since

Erχ | θ “ Hs “ fHpPrX “ 1 | θ “ Hs,PrX “ 1 | θ “ Lsq

Erχ | θ “ Ls “ fLpPrX “ 1 | θ “ Hs,PrX “ 1 | θ “ Lsq

Varrχ | θ “ Hs “ gHpPrX “ 1 | θ “ Hs,PrX “ 1 | θ “ Lsq

Varrχ | θ “ Ls “ gLpPrX “ 1 | θ “ Hs,PrX “ 1 | θ “ Lsq.
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