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Abstract

Social connections provide various benefits, such as access to information, sup-

port, and collaboration, motivating individuals to form networks. However, in

many social settings—like academic conferences or networking events—participants

are initially strangers, making the networking process inherently anonymous and

random. This paper incorporates anonymity into the canonical non-cooperative

connections model (Bala and Goyal (2000)) to explore symmetric, mixed-strategy

equilibria in network formation. We show that, for any trembling-hand perfect

equilibrium, strategies can be interpreted as socialization effort and yield a ran-

dom network, closely related to but distinct from classical Erdős–Rényi graphs.

This provides a strategic microfoundation for random graphs. We fully charac-

terize these equilibria and efficient networks for large populations as a function of

connection costs.

1 Introduction

Social connections hold many benefits like opportunities to access new information, re-

ceive support, socialize and collaborate. These benefits are commonly known and are an

important motivation for forming social connections. Often, individuals that are initially
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strangers to one another find themselves in a situation that is meant to build connections

among them. Consider an introductory event for new assistant professors at a university,

a social mixer for newcomers to a city, a professional networking event or an academic

conference where participants have not known each other before. In such situations, an

individual may not base her networking decision on the identity of others. However, she

can still decide how many connections to form or, in other words, how much effort to

invest into socializing.

When individuals cannot differentiate others based on their identity, strategic network

formation possesses an innate randomness due to uncertainty about which individuals

meet. We show that incorporating anonymity into a canonical strategic network for-

mation model naturally connects strategic and random network formation – two topics

that have been studied widely but mostly independently of each other. In particular,

we provide a microfoundation for a random network formation process similar to but

not the same as Erdős–Rényi through a canonical strategic network formation model

with discrete link choices in large but finite populations. This identifies a new family of

networks – in this case, random – that can be rationalized by symmetric, mixed-strategy

equilibria of the same model which gives rise to deterministic networks like the circle

and the star.

We investigate symmetric anonymous Nash equilibria of the canonical non-cooperative

connections model with decay by Bala and Goyal (2000). In the model, an individual

derives a benefit from every individual they are (directly or indirectly) connected to,

that is decreasing in the distance d of that connection as determined by a decay function

b(d), and they have to pay a constant cost c for each link they form. With the anonymity

assumption, an individual’s strategy set of choosing whom to link to reduces to choosing

a distribution over their out-degree. In equilibrium, individuals choose this distribution

so as to maximize their expected utility from the resulting network. We characterize the

asymptotic behavior of a sequence of equilibria (one equilibrium for each n) when the

population size n approaches infinity.

Every nontrivial equilibrium is of one of the following three types: 1) mixed-degree

where individuals mix between two adjacent degrees, 2) all-or-nothing where individuals

mix between degree zero and n− 1, or 3) more-than-half where individuals mix over de-

grees that are larger than half of the population. Of these three types, only mixed-degree
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equilibria can be robust, in the sense that they can satisfy trembling-hand perfection,

and we focus our analysis on them.

Mixed-degree equilibria are fully described by one real number which represents the

mixture over two adjacent out-degrees and is equal to the expected out-degree. This

equilibrium parameter can be interpreted as a socialization effort.1 Any such equilibrium

gives rise to a random network formation process, first discussed in the Scottish book

under the name Gk−out (see Bollobás (2001), p. 41). An essential property of the random

process is that every node has out-degree k with links formed uniformly at random.

Importantly, this implies that edges do not form independently, unlike in an Erdős–

Rényi random graph.2

The nature of mixed-degree equilibria for large populations varies across three linking

cost regimes. For low costs (c < b(1) − b(2)), in equilibrium agents link to a constant

fraction of the population, k ≈ αn, and in the resulting random graph, the distance

between any two agents is at most 2. For intermediate costs (b(1) − b(2) < c < b(1)),

k ≈
√
n. In this case, agents link to a vanishing fraction of the population, but still

the distance between any two agents is at most 2. For high costs (c > b(1)), there

exist two types of equilibria. The first is a high-degree equilibrium, where k ≈
√
n as

with intermediate costs. The second is a low-degree equilibrium, where agents link to a

bounded number of other agents, and this bound is independent of n. Despite the fact

that the resulting random graph is connected, from each agent’s perspective the graph

is tree-like up to a far distance. In particular, the size of the smallest cycle an agent

is contained in goes to infinity. The bounds of our regimes exactly correspond to the

bounds in the pure equilibrium analysis of Bala and Goyal for large populations.3 We

will discuss the relation to their paper in more detail in Section 6.

We also study asymptotic efficiency within the class of symmetric anonymous strategy

profiles. We find that anonymous equilibria are not efficient. We show that, in the low-

1Such a socialization effort has been used in Golub and Livne (2010) and Cabrales et al. (2011) to

investigate a random and weighted network formation process, respectively. We will elaborate on our

relation to these papers later.
2In Section 4.1, we discuss in more detail the relationship between our random network formation

process and Erdős–Rényi graphs.
3Bala and Goyal find three bounds where the equilibrium behavior changes: b(1) − b(2), b(1), and

b(1)+(n−2)b(2). Since we study equilibria as the population size n approaches infinity, this last bound

disappears.
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cost case, a strategy that links to a larger fraction of agents compared to the equilibrium

strategy achieves higher social welfare. In the intermediate- and high-cost ranges, the

efficient strategy profiles are all-or-nothing strategy profiles. The probability that is

assigned to linking to all agents is vanishingly small, so that the resulting network is

the join of a nonempty but small set of stars. We show that these profiles achieve the

full social welfare relative to efficient pure networks, so anonymity is not a barrier to

efficiency in these ranges.

Finally, we extend our analysis to incorporate homophily and show how strategic

network formation can give rise to community structures. Building on the island model

of Jackson and Rogers (2005) we consider a setting where link costs depend on type

similarity. We characterize the resulting semi-anonymous equilibria and show that they

feature dense intra-group and sparse inter-group links. This provides a strategic mi-

crofoundation for modular networks shaped by homophily, connecting rational behavior

with empirically observed features of social networks.

Related literature. Numerous papers have studied network formation in environments

where players have perfect knowledge about others and their strategies. In such environ-

ments, players choose their utility-maximizing actions considering every other player’s

choice and a network deterministically emerges from action profiles. Seminal papers on

such settings of strategic network formation of deterministic networks are Jackson and

Wolinsky (1996) and Bala and Goyal (2000). Many papers have followed to investigate

various issues in such settings. In our setting, where players do not perfectly know others

and their strategies and do not target particular other individuals, network formation

possesses a random element in that there exists uncertainty about who ends up forming

links with whom.

Randomness in network formation has traditionally been treated as a mechanical

process without any strategic choices by agents. Examples are Watts (1999) and Watts

and Strogatz (1998) that produce random graphs with high clustering and a small average

between two nodes. Price (1976), Barabási and Albert (1999), and Cooper and Frieze

(2003) generate random graphs where degrees follow a power-law distribution. Jackson

and Rogers (2007) are able to explain several key features of large social networks,
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including small diameters, high clustering, fat-tailed degree distributions, and positive

assortativity. They combine a random meeting process with network-based meetings. In

their model, agents are mechanically connected to others either uniformly at random or

by searching locally through the current structure of the network (e.g., meeting friends

of friends). The main distinction to our paper is that our agents are strategic and a

random network formation process is induced from agents’ strategic choices, and not

from a mechanical process with non-strategic agents.

Some papers have investigated random network formation with strategic agents. Cur-

rarini et al. (2009) assume a mechanical random matching process between agents during

which friendships are formed. Individuals strategically choose how much time to spend

matching (and thus forming relationships) with others. The probabilities of matching

with different types depend on the types’ endogenous participation ratios in the match-

ing process. They use this model to analyze the contribution of chance and preferences

towards homophily in networks – the tendency of individuals to form connections with

others of their own type.

Cabrales et al. (2011) are the first to study a network formation process where linking

strategies do not depend on others’ identities and reflect the idea of network formation

among strangers. In their model, agents’ strategic choice is a socialization level and a

productive effort. A profile of socialization levels deterministically leads to a weighted

network where two agents’ interaction (link) intensity depends on their chosen socializa-

tion efforts. This intensity can be interpreted as a linking probability. Agents’ utilities

depend only on their own productive effort and the productive efforts of their direct

neighbors. In contrast to Cabrales et al. (2011), we consider an agent’s only choice to

be the number of links he forms, with each other agent having the same probability of

receiving a given link from that agent, and utility arising from the number of (in)direct

connections decreasing with their distance. Our strategy space gives rise to a random

network formation process with discrete links. A mixed-degree equilibrium arises endoge-

nously in our model, and the equilibrium strategy can be interpeted as a socialization

effort. As this paper, Cabrales et al. (2011) analyze the limit of Nash equilibria when

the population size goes to infinity. They identify a low- and high-activity equilibrium,

as we do for mixed-degree equilibria under high costs.

Golub and Livne (2010) develop a theory of social network formation in which in-
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dividuals make strategic decisions about how much effort to invest in socializing under

uncertainty. In a first stage of network formation, links between agents are formed in-

dependently, with a probability that depends on chosen socialization parameters. A

second stage of network formation ensues in which agents are linked mechanically to

friends of their friends with an (independent) exogenous probability. In this paper,

anonymity ensures that, ex-ante, all links are formed with the same probability; how-

ever, link formation is not independent. Conditional on a link being formed, all other

links’ probabilities of being formed have decreased. This corresponds to the intuition

that an individual who spends effort on one connection cannot spend this effort on an-

other connection. An individual does not interact with all other individuals with the

same intensity, but rather a group of others to interact with is chosen uniformly. Fur-

thermore, Golub and Livne (2010) assume that an agent’s utility from the final network

is given by the value of his direct connections only, meaning the utility of connections

they form in the first networking stage and an expected utility from forming links with

agents that are friends of friends. In contrast, we consider distance-based utility from

both direct and indirect connections. Under certain parametric values, Golub and Livne

identify that equilibrium networks can be either sparse or dense, again similar to our

findings in the high-cost regime for mixed-degree equilibria.

2 Model

We consider a network formation game with distance-based utility à la Bala and Goyal

(2000). The set of players is N = {1, . . . , n}, and the strategy set of player i ∈ N is

Si = 2N\i, the collection of all subsets of players other than i.4 Every strategy profile

s = (s1, . . . , sn) determines a directed network g = g(s), where for i, j ∈ N , ij ∈ g if

j ∈ si. We denote by ĝ the undirected network that is formed by g where ij ∈ ĝ if ij ∈ g

or ji ∈ g.

For i ∈ N , we let Ni(g) be the set of agents j ∈ N that can be accessed from i via a

directed path in g. Similarly, let Ni(ĝ) be the set of agents j ∈ N that can be accessed

4Note that the standard approach is to take the strategy space to be the set of 0 − 1 vectors with

coordinates corresponding to agents other than i. Taking the strategy space to be the set of subsets of

players other than i is equivalent and for our purposes is notationally more convenient.
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from i via a path in ĝ or, in other words, the set of nodes that are in the same component

as i.

We consider the two-way flow model, meaning a directed link confers benefits in both

directions. Agent i pays a cost of c · |si|, where c > 0 is a positive constant representing

the cost of an edge, and her benefit from a network g is

Bi(g) =
∑

j∈Ni(ĝ)\{i}

b(dĝ(i, j)),

where b : N → R+ is a decreasing function and dĝ(i, j) is the length of the shortest path

from i to j in ĝ. This defines a utility in the game where

ui(s) = Bi(g(s))− c · |si|.

Anonymity. We next introduce anonymity in the baseline network formation game.

Let Xi = ∆(Si) be the set of mixed strategies of agent i ∈ N . Say that a mixed strategy

xi ∈ Xi is anonymous if the probability it assigns to any subset of agents in N \i depends

only on its size and not the identity of the agents. Equivalently, xi is anonymous if there

exists a function fi : {0, . . . , n− 1} → [0, 1] such that the probability agent i assigns to

any subset of agents T ⊆ N \ i is xi(T ) =
1

(n−1
|T | )

· fi(|T |). Note that for any k, fi(k) is

the probability that agent i chooses out-degree k, i.e. the probability that |si| = k.

This construction assumes that agents treat all other agents uniformly when forming

links, reflecting the anonymity assumption. We will say that the anonymous strategy xi

is a degree strategy if there is a k such that fi(k) = 1; when there is no ambiguity, we

will refer to this strategy as simply k. The support of an anonymous strategy, defined

as Supp(xi) = {k : fi(k) > 0}, represents all possible numbers of agents that the agent

decides to link to with positive probability. Note that every anonymous strategy is

effectively a mixture over degree strategies. In particular, if an anonymous strategy is a

best response, then all degree strategies in its support must also be best responses.

This formulation aligns with the practical interpretation of anonymous strategies in

network formation. Agents, constrained by the lack of distinguishing information, make

strategic choices based on their expectations regarding the overall level of networking

activity rather than individual efforts.

We call a profile of anonymous strategies x = (x1, . . . , xn) symmetric if there exists

a function f such that fi = f for all i ∈ N , in which case we say that x is a symmetric

7



anonymous profile. This ensures that all agents adopt the same probabilistic approach

to forming links, further reinforcing the symmetry inherent in the model.

We will abuse notation and write ui(x) to refer to agent i’s expected utility when the

mixed strategy profile x is used:

ui(x) = Es∼x[ui(s)].

We analyze the Nash equilibria of the game. We say an equilibrium is symmetric

anonymous if its strategy profile is symmetric anonymous. For the remainder of the

paper, unless otherwise stated, “equilibrium” will mean symmetric anonymous equilib-

rium.

For c ≥ b(1), there always exists the trivial equilibrium of the empty network, where

no agent links to any other agent. In the following, we will focus on non-trivial equilibria

where agents use strategies with positive (expected) out-degree.

3 Equilibrium structure

In this section, we will provide a preliminary characterization of symmetric anonymous

equilibria. Throughout this section, we fix the number of agents to be n.

Denote by u(k;x) the expected utility of an agent if they use the degree strategy k

when all other agents use the anonymous strategy x. We will say that u(·;x) is concave

at k if u(k+1;x)−u(k;x) ≤ u(k;x)−u(k− 1;x), and we will say that u(·;x) is concave

if it is concave at every k ∈ {1, . . . , n− 2}. We will say that u(·;x) is strictly concave if

this inequality is strict.

Proposition 1. For any anonymous strategy x, u(·;x) is concave. Moreover, if x has

full support, then u(·;x) is strictly concave.

This follows from the more general fact that ui(s−i, si) is submodular in si; see Ap-

pendix A. Concavity implies a useful structural property for equilibrium analysis. When

the utility function u(·;x) is concave, agents face diminishing returns when increasing

their out-degree. This condition simplifies the equilibrium characterization by limiting

the range of candidate equilibrium strategies. Moreover, if u(·;x) is strictly concave, then

at most two degrees that are adjacent maximize u(·;x): either argmaxu(·;x) = {k} or

argmaxu(·;x) = {k, k + 1} for some k. We will say that an anonymous strategy is a

8



mixed-degree strategy if it is a degree strategy k or it is supported on two adjacent degree

strategies k and k+1. If x has full support, it follows that any best response to all other

agents using the strategy x must be a mixed-degree strategy. As an immediate corollary,

any trembling hand perfect equilibrium must be mixed-degree.

Corollary 1. If x corresponds to a trembling hand perfect equilibrium, then x is a

mixed-degree strategy.

Mixed-degree strategies can be naturally identified with real numbers κ ∈ [0, n− 1],

where for k ∈ {0, . . . , n− 2} and ρ ∈ [0, 1], κ = k + (1− ρ) corresponds to the strategy

that mixes between degree k and k + 1 with probability ρ and 1− ρ, respectively. Note

moreover that the expected out-degree of the mixed-degree strategy κ is exactly κ. The

identification of mixed-degree strategies with a real number allows us to interpret such

strategies as socialization efforts. In Section 4, we will investigate mixed-degree equilibria

in detail. Mixed-degree equilibria exist for all costs and they feature different properties

for different cost regimes. For high costs, all equilibria are mixed-degree, and for all costs,

mixed-degree equilibria are the only robust ones, in the sense that no other equilibria

are trembling hand perfect.

For intermediate and small costs, equilibria can also take two other forms. We will say

that an anonymous strategy is all-or-nothing if it is supported on the degree strategies 0

and n− 1. We will say that an anonymous strategy is more-than-half if it is supported

on degree strategies k ≥ (n− 1)/2.

Our first main result provides a complete characterization of all symmetric anony-

mous equilibria provided that n is sufficiently large.

Theorem 1. For any c > 0 and a sufficiently large n, there exists a nontrivial mixed-

degree equilibrium. In addition, the non-mixed-degree equilibria are characterized as

follows:

a) If c ≥ b(1), there are no non-mixed-degree equilibria.

b) If c < b(1), there exists a unique all-or-nothing equilibrium.

c) If c < b(1)−b(2)
2

, then any more-than-half strategy profile with expected out-degree(
1− c

b(1)−b(2)

)
(n− 1) is an equilibrium.
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We outline here the ideas used to prove Theorem 1; a formal proof is in Appendix E.

While it can be shown that standard results imply the existence of mixed-degree equi-

libria, they do not imply the existence of a nontrivial one. To establish a nontrivial

mixed-degree equilibrium, suppose that all agents are using the mixed-degree strategy

κ. The marginal benefit of an additional edge is very large (approaching ∞) if k ≈
√
n

and is close to 0 if κ ≈ n− 1. Since the marginal benefit of an additional edge is contin-

uous (in a suitable sense) in κ, if n is large, then there is some κ between
√
n and n− 1

for which the marginal benefit is c.

As for the remaining characterizations, observe that if x corresponds to an equilib-

rium which is not mixed-degree, then u(·;x) cannot be strictly concave. Characterizing

equilibria which are not mixed-degree reduces to understanding failures to be strictly

concave.

As we show, if x is an anonymous strategy and k is in the support of x for some

1 ≤ k < (n − 1)/2, then u(·;x) is strictly concave at all k′ ∈ {1, . . . , n − 1 − k}. In

particular, if k is a maximizer of u(·;x), then the set of maximizers must be either

{k − 1, k}, {k}, or {k, k + 1}. Hence, if x corresponds to an equilibrium whose support

contains some 1 ≤ k < (n− 1)/2, then x must be mixed-degree.

In a similar spirit, we show that if the support of x contains 0 and k for some

(n− 1)/2 ≤ k < n− 1, then u(·;x) is strictly concave at 1. But this would imply that 0

and k cannot both maximize u(·;x), so such an x cannot correspond to an equilibrium.

Together, these observations imply that every equilibrium which is not mixed-degree

must be all-or-nothing or more-than-half. In the remainder of this section, we will

provide a brief analysis of non-mixed-degree equilibria. The next section will focus on

mixed-degree equilibria and their corresponding random graphs.

3.1 All-or-nothing equilibrium

Let x be the all-or-nothing strategy which puts probability p on the degree strategy n−1

and 1−p on the degree strategy 0, and consider agent i’s payoff if all other agents use the

strategy x. If agent i forms links with all other agents, then she pays a cost of c for each

link and gets a benefit of b(1) from each other agent, so u(n− 1;x) = (n− 1) · (b(1)− c).

Now suppose agent i forms no links. If another agent j forms n−1 links, then i’s distance

to j is 1, and this occurs with probability p. If j forms no links and at least one other
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agent forms n − 1 links, then i’s distance to j is 2, and this occurs with probability

(1− p) · (1− (1− p)n−2). With the remaining probability, the network is empty. Hence,

u(0;x) = (n− 1) · [p · b(1) + (1− p) · (1− (1− p)n−2) · b(2)].

A necessary condition for x to correspond to an equilibrium is that 0 and n − 1 must

both be maximizers of u(·;x). In particular, 0 and n − 1 must both give the same

utility. Setting the expressions for u(0;x) and u(n − 1;x) equal and rearranging yields

the following equation, which p must solve in order for x to correspond to an equilibrium:

(1− p) · (b(1)− b(2)) + (1− p)n−1 · b(2) = c.

As we show in Appendix C.1, this condition is also sufficient. This equation has a

unique solution for c < b(1) and no solution for c > b(1). If c < b(1) − b(2), then the

solution is p = 1 − c
b(1)−b(2)

+ o(1), and if b(1) − b(2) < c < b(1), then the solution is

p = − 1
n
· log

(
c−(b(1)−b(2))

b(2)

)
+ o( 1

n
).

3.2 More-than-half-equilibria

Let x be a more-than-half strategy. If an agent i uses the degree strategy k ≥ (n− 1)/2

when all other agents use the strategy x, then by the pigeonhole principle, the distance

to any other agent is at most 2 with probability 1. Hence, the benefit agent i gets from

another agent j is b(1) if i and j are directly connected and b(2) otherwise, so

u(k;x) =
∑
j ̸=i

{P[ij ∈ g] · b(1) + P[ij /∈ g] · b(2)} − c · k

=
∑
j ̸=i

{b(2) + P[ij ∈ g] · (b(1)− b(2))} − c · k.

Denote by k̃ the expected out-degree under the strategy x. The probability that j forms

a link to i is k̃
n−1

and the probability that i forms a link to j is k
n−1

. Since these events

are independent,

P[ij ∈ g] = P[i ∈ sj] + P[i /∈ sj] · P[j ∈ si] =
k̃

n− 1
+ (1− k̃

n− 1
) · k

n− 1
,

so

u(k;x) = (n− 1) · b(2) + k̃ · (b(1)− b(2)) +

(
(1− k̃

n− 1
) · (b(1)− b(2))− c

)
· k.

11



If x is an equilibrium and (1− k̃
n−1

) · (b(1)− b(2))− c ̸= 0, then u(·;x) has a unique

maximizer among k ≥ (n− 1)/2, so x must be mixed-degree. It follows that if x is not

mixed-degree, then

k̃ = (1− c

b(1)− b(2)
) · (n− 1).

In fact, this condition is necessary and sufficient. That is, if x is a more-than-half

strategy, then it is an equilibrium if and only if its expected out-degree is equal to

(1 − c
b(1)−b(2)

) · (n − 1). Note that since x is more-than-half, the expected out-degree is

at least (n− 1)/2, so this is only possible for c ≤ 1
2
· (b(1)− b(2)).

4 Mixed-degree equilibria

4.1 Random network formation process

Erdős–Rényi graphs are a well-studied random graph model that often serves as a base-

line for understanding the structure and dynamics of more complex social networks.

While our Gk-out graphs are strongly related to Erdős–Rényi graphs, there are some

fundamental distinctions.

The Erdős–Rényi (ER) model G(n, p) is constructed by starting with n nodes and

independently including each possible (undirected) edge between pairs of nodes with a

fixed probability p. This independence between edges makes G(n, p) particularly simple

to analyze, as many of its properties, such as degree distribution and connectivity thresh-

olds, follow directly from classical probability theory. One key feature of G(n, p) is that

the degree distribution of nodes follows a binomial distribution, which approximates a

Poisson distribution for large n and small p. The Erdős–Rényi model is often used to

study the emergence of connectivity and giant components in random graphs.

In the Gk-out model, there are n agents, and each agent independently selects exactly

k other agents uniformly at random from the remaining n − 1 agents. These selections

are directed: when agent i selects agent j, it represents an outgoing link from i to j. The

resulting undirected network, denoted by ĝ, is then constructed by placing an undirected
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edge between agents i and j if either i selects j or j selects i, or both.5

While the Erdős–Rényi model and the Gk-out model give rise to different forms of

random graphs, they share some common features. To illustrate this, fix k > 0 and

compare Gk-out to G(n, p) with p = 2k
n
for large values of n. This is the natural choice of p,

as it leads to a network with the same expected degree 2k asymptotically. Approximately,

the degree distribution of the ER graph is Pois(2k), while the degree distribution of the

Gk-out graph is Pois(k) + k, since each agent selects k other agents and is selected by

Pois(k) other agents. Gk-out is connected with probability that approaches 1 for k > 1

as n grows (see Bollobás (1998) Theorem 7.34). In contrast, for large values of n, the

ER graphs have a giant component with constant fractions of agents but also have a

constant fraction of isolated nodes (see, e.g., Durrett (2010) Chapter 2).

Figure 1: Comparison of random graphs

4.2 Characterization of mixed-degree equilibrium

Our main result provides the characterization of mixed-degree equilibria for all cost

regimes. More precisely, we determine the properties of mixed-degree equilibrium se-

quences when the population grows large. We show that for linking costs less than the

benefit of a direct connection, b(1), the limit behavior of any equilibrium sequence is

unique. For linking costs larger than b(1), we show the existence of low-degree equilibria

and characterize the behavior of high-degree equilibria.

We will denote by E(c, n) the set of equilibrium values κ when the cost is c and there

5Our variant allows agents to choose any non-negative real number κ (rather than only integer values

k). In this case, each agent i selects a random subset of ⌊κ⌋ or ⌈κ⌉ other agents, with probabilities chosen

to ensure expected out-degree κ.
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are n agents. If c > b(1), then 0 ∈ E(c, n) for all n, and if c < b(1), then 0 /∈ E(c, n) for

any n. In Theorem 2, we characterize the limit of non-trivial equilibria where κn > 0.

Theorem 2. Let κn ∈ E(c, n) for each n.

a) If c < b(1)− b(2), then limn→∞
κn

n
= 1− c

b(1)−b(2)
.

b) If c ∈ (b(1)−b(2), b(1)), then κn >
√
n for all sufficiently large n and limn→∞

log(κn)
log(n)

=

1
2
.

c) If c > b(1), then for all sufficiently large n, there is at least one low-degree equilib-

rium, 0 < κn <
√
n and at least one high-degree equilibrium, κn >

√
n. Moreover,

every sequence of low-degree equilibria is bounded, and for every sequence of high-

degree equilibria, limn→∞
log(κn)
log(n)

= 1
2
.

The proof of Theorem 2 is in Appendix F. The realized networks exhibit distinct

properties across the three cost regimes. In the low-cost regime (c < b(1)−b(2)), networks

are highly connected, with agents forming links to a nonzero fraction of the population.

This ensures that the average path length between any two agents is less than 2, implying

a dense network structure. In the intermediate-cost regime (b(1)− b(2) < c < b(1)), the

networks become sparser, as agents form a vanishing fraction of links relative to the

population size. Despite this sparsity, the average path length is exactly 2, maintaining

a balance between connectivity and cost efficiency. For the high-cost regime (c > b(1)),

the equilibrium networks take on two distinct forms: low-degree or high-degree. A low-

degree equilibrium results in a sparse, tree-like structure where the number of links is

bounded. From the perspective of any given agent, the local network topology appears

branching and acyclic. Conversely, in a high-degree equilibrium, the network is dense

and highly connected, similar to the intermediate-cost regime but achieved at a higher

individual cost. This is in sharp contrast to the intuition that a higher cost implies a

less connected network.

We next outline the main ideas behind the proof of Theorem 2. Note that while for

every population size n the equilibrium is not necessarily unique, the asymptotic equi-

librium behavior is often unique. The nature of equilibria is critically dependent on the

relationship between the linking cost c and the benefit from an agent being distance one

or two away, b(1) and b(2). Three distinct regimes emerge:
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1. Low-Cost Regime (c < b(1)− b(2)):

In this regime, the cost of forming a link is relatively low. Consequently, if two agents

are not linked, it is mutually beneficial for one to link to the other. However, if agent

i is already linked to agent j, the marginal benefit for j to reciprocate the link is zero,

as the link is redundant. When the average degree, κ, is small relative to the network

size (i.e., κ/n is small), the probability of establishing a redundant link is low. Thus,

increasing the degree is generally advantageous. Conversely, when the average degree is

large relative to the network size (κ/n is large), the likelihood of redundancy increases

and reducing the degree becomes beneficial. An equilibrium is attained when the proba-

bility of forming a redundant link is just high enough that the expected marginal benefit

of an additional link is precisely offset by the cost, c.

2. Intermediate-Cost Regime (b(1)− b(2) < c < b(1)):

In this regime, the cost of forming a link is moderate. The fraction of agents that are

at distance 2 from a given agent becomes a salient factor in determining equilibrium be-

havior. If the average degree, κ, is large relative to
√
n, the network exhibits small-world

properties, with the average path length between agents being at most 2. Consequently,

the marginal benefit to an agent from additional links is small as most agents are already

in close proximity. In fact, if κ > n
1
2
+ε, it is profitable for any agent to switch to forming

no links.

Now, if nε < κ < n
1
2
−ε, most agents are a distance at least 3 from a given agent i.

With high probability, adding an additional link results in a new direct connection with

some agent j, as well as changing the distance from i to j’s approximately 2κ neighbors

from at least 3 to 2. Hence, the benefit of an additional link is at least approximately

(b(2)− b(3)) · 2κ, which is much larger than c for large n. On the other hand, if κ < nε

for some small ε, then most agents are far away from i. In particular, for m such that

b(1) − b(m) > c and ε < 1
m
, almost all agents are at least distance m away from i. It

follows that the benefit of an additional link is at least approximately b(1) − b(m), so

adding an additional link is profitable. Putting these cases together, it follows that in

equilibrium, κ must be between n
1
2
−ε and n

1
2
+ε for large enough n.

3. High-Cost Regime (c > b(1)):
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In this regime, the cost of forming a link is substantial and two distinct types of equi-

libria can emerge: low-degree equilibria, characterized by a bounded number of links

per agent, and high-degree equilibria, where the number of links per agent grows with

network size.

High-Degree Equilibria: Despite the high linking cost, one can show the existence of

a high-degree equilibrium. The behavior of these high-degree equilibria closely mirrors

that of the intermediate-cost regime, with each agent forming approximately
√
n links.6

Low-Degree Equilibria: If the number of links κn is unbounded as the network size

grows but remains less than
√
n, then the benefit of an additional link is at least pro-

portional to κn. Consequently, such a sequence can only correspond to equilibria for a

finite number of n, so any sequence of low-degree equilibria must be bounded.

A necessary condition for equilibrium is that an agent is indifferent between forming

k and k + 1 links. For networks with a growing but less than
√
n number of links, the

substantial benefit of an additional edge precludes this. Using a continuity argument,

we show that there is always some low-degree strategy where this indifference holds.

5 Welfare

In this section, we ask what the welfare-maximizing symmetric anonymous strategy pro-

file is. We consider a social planner who can choose the agents’ strategy profile but is

restricted to choosing from among the symmetric anonymous strategy profiles. The plan-

ner’s goal is to choose the degree distribution that maximizes the sum of agents’ utilities.

We compare the maximum welfare achieved by a symmetric anonymous profile to the

maximum welfare attainable using pure strategies, as characterized by Bala and Goyal

(2000). Note that the maximum welfare under pure strategies is the highest possible

welfare achievable in this model if we did not restrict ourselves to symmetric anony-

mous strategies and thus is an upper bound to the maximum welfare with a symmetric

anonymous strategy profile.

For a population of size n and an anonymous strategy x, denote by Wn(x) the social

welfare (sum of agents’ utilities) when all agents use the strategy x. Recall that in general,

an anonymous strategy can be identified with a distribution over {0, 1, . . . , n − 1}. Let
6To be precise, each agent forms n

1
2+o(1) links.
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W ∗
n = maxx Wn(x) where the maximum is taken across all anonymous strategies. We

are interested in the asymptotic behavior and growth rate of W ∗
n .

Proposition 2. The asymptotic optimal welfare among symmetric anonymous strategy

profiles is achieved by:

1. for c < 2(b(1) − b(2)), the mixed-degree strategy kn
n

= 1 − c
2(b(1)−b(2))

, and results

in welfare which is a constant fraction < 1 of the optimal welfare attainable using

pure strategies, and

2. for 2(b(1)−b(2)) < c, the all-or-nothing strategy where the agent links to all others

with probability log(n)
n

and results in asymptotic welfare that has fraction of 1 of

the welfare achieved by the optimal star network.

Note that for c < 2(b(1)− b(2)), the efficient anonymous network is achieved with a

mixed-degree strategy. One can show in fact that any anonymous strategy with expected

degree equal to n(1− c
2(b(1)−b(2))

) achieves the same asymptotic welfare.

Compared to equilibria in the range c < 2(b(1)− b(2)), the expected degree is higher

in the efficient network. The standard reasoning applies here: the efficient profile takes

into account the positive externality that one agent’s links have on the connectivity of

other agents. On the other hand, for the case c > 2(b(1)− b(2)), the efficient anonymous

random network is obtained by the all-or-nothing strategy where n − 1 is chosen with

probability log(n)
n

. The resulting network is a “multi-center star” network, which has at

least one center (i.e. is not the empty network) with high probability. At the same

time, the expected fraction of center agents vanishes as n → ∞. Note that in this

case, the expected degree in the efficient network is much lower than in the high-degree

equilibrium.

Clearly, restricting attention to anonymous strategies implies that in the realized

network two individuals may both link to each other. This results in a welfare loss

that cannot be avoided with non-anonymous strategies due to their random nature.

Surprisingly, in the range 2(b(1) − b(2)) < c, the loss is not significant, and a carefully

chosen all-or-nothing strategy achieves a fraction 1 of the optimal asymptotic welfare.
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6 Relation to the deterministic network formation

process (Bala and Goyal (2000))

We start by comparing our results on mixed-degree equilibria to the pure equilibria of

Bala and Goyal (2000). In their analysis of pure equilibria, Bala and Goyal identify four

cost domains:

• Lower domain (c < b(1)− b(2)): The unique equilibrium is a complete network,

with each link between a pair sponsored by exactly one of the agents.

• Intermediate domain (b(1) − b(2)) < c < b(1)): The star network forms an

equilibrium, with each link sponsored by either the center or the periphery agent.

• Upper domain (b(1) < c < b(1) + (n−2)
2

b(2)): The unique equilibria consist of

peripherally sponsored stars.

• Infeasible domain (b(1) + (n−2)
2

b(2) < c): Only the empty network is stable.

Note first that interestingly the anonymous equilibria analysis essentially identifies the

same cost domains as Bala and Goyal (2000) where the last cost domain does not appear

in our analysis since we take the population size n to infinity. In the lower-cost domain,

we identify that the anonymous equilibrium has the property that agents choose to link

uniformly to a fraction 1 − c
b(1)−b(2)

of the population. Thus, instead of a complete

network, we have a linear out-degree network. The complete network does not arise

as an equilibrium in our model because implementing it with an anonymous symmetric

strategy profile results in double investment into links.

In the intermediate and upper cost domain, our analysis of the mixed-degree equilib-

rium shows that in anonymous equilibrium networks, agents link to approximately
√
n

of the population of size n. The equilibrium star network of Bala and Goyal minimizes

the total cost across all networks with a diameter 2. Similarly, the
√
n threshold has the

property that it is the minimal mixed-degree strategy to get a network such that each

pair of agents lie within distance 2 of each other with high probability.

Finally, our finite degree equilibrium in the upper cost domain has no equivalent in

the pure equilibrium analysis. In particular, the finite degree equilibrium may exhibit

nonmonotonic behavior of the degree with respect to the cost.
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As for welfare-maximizing networks, the pure strategy analysis identifies the following

networks as a function of the cost:

1. For c < 2(b(1)− b(2)), the complete network is efficient.

2. For 2(b(1)− b(2)) < c < 2b(1) + (n− 2)b(2), stars are efficient.

3. For 2b(1) + (n− 2)b(2) < c, the empty network is efficient.

It follows from Proposition 2 that, as in the equilibrium analysis, the cost ranges across

which the structure of the welfare-optimizing network is constant are identical in the

anonymous case and the pure case identified by Bala and Goyal (2000). For the low

cost range, the efficient mixed-degree strategy identified in Proposition 2 approximates

the complete network while avoiding costly double investment. As discussed above, the

efficient network in the higher cost range approximate the star network.

7 Strategic Origins of Community Networks

One of our main contributions is to bridge the traditionally separate fields of strategic

and random network formation. In particular, we show that anonymous equilibrium

behavior induces a random Gk−out network formation process that is similar to the Erdős-

Rényi model. This establishes a novel link between strategic interaction and a class

of random networks, demonstrating that random network structures can emerge from

rational decision-making in anonymous settings.

Erdős-Rényi (ER) graphs provide a simple model that allows researchers to derive

analytical results on key network properties such as degree distribution, clustering, and

connectivity. Their tractability makes ER graphs a widely used, valuable baseline model

for understanding more complex network structures.

Despite their mathematical appeal, however, Erdős-Rényi (G(n, p)) and Gk−out graphs

fail to capture several key structural features of real-world social networks. One such

feature is the presence of pronounced community structure, a property extensively docu-

mented in the empirical and theoretical literature (see, e.g., Zachary (1977); Girvan and

Newman (2002); Newman and Girvan (2004)).

A network exhibits community structure if its nodes can be partitioned into groups (or

“communities”) such that links within groups are significantly denser than links between
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groups. This modular organization reflects the empirical observation that social ties tend

to concentrate within social circles, clubs, or workplaces, forming cohesive subgroups

embedded in a larger sparse network.

Community structure in social networks is often attributed to homophily, which is

the tendency of individuals to form ties with others who share similar attributes, such

as age, profession, education level, or cultural background. Since ER and Gk−out graphs

assume edges form independently of node attributes, they fail to generate the assortative

mixing patterns and modular clustering observed in real social systems. These limitations

underscore the importance of network formation models that incorporate both strategic

interactions and homophily-driven group formation.

7.1 Anonymous Network Formation with Homophily

We illustrate how our anonymity idea can be extended to generate social networks that

exhibit realistic community structure by explicitly incorporating homophily. Our ap-

proach builds upon the island model introduced in Jackson and Rogers (2005).

Let ℓ ∈ N be the number of communities and consider a set of agentsN = {1, 2, . . . , ℓn}.

Community m is given by the set of agents

Gm = {(m− 1)n+ 1, . . . ,mn}, m = 1, 2, . . . , ℓ.

We assume that all members of the community Gm share the same homophily type,

denoted θm.

As in our model, agents may form costly links with one another. The cost of forming a

link depends on the homophily types involved. If agents i and j share type θm, the cost is

c, whereas if they belong to different types, the cost is c, with 0 < c < b(1)−b(2) < b(1) <

c. This condition ensures that within–type links are always less costly than across–type

links, reflecting homophily. We consider a semi-anonymous strategy in which agents

condition their linking decisions only on whether the other agent is of the same type.

Concretely, each type–θm agent adopts a mixed strategy with expected degrees (kin, kout),

where

• kin denotes the expected number of links formed with agents of the same type, and

• kout denotes the expected number of links formed with agents from each other type.
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We note that in this setting, the existence of a mixed-degree strategy equilibrium is

not guaranteed. However, the existence of a semi-anonymized equilibrium defined above

follows standard fixed-point considerations.

Our analysis yields the following result.

Proposition 3. Let
(
kin,n, kout,n

)
be the expectation of an equilibrium strategy profile

in the game defined above. Then

lim
n→∞

kin,n
n

= 1− c

b(1)− b(2)
·

In addition, there exist c1, c2 > 0 such that c1 log(n) ≤ kout,n ≤ c2 log(n).

In equilibrium, agents balance the benefits of connectivity against the variation in link

formation costs across types. The resulting network features dense links within groups,

as kin,n scales linearly with group size, and relatively sparse links between groups, as

kout,n grows only logarithmically. This contrast in link density within and across groups

provides a strategic foundation for the emergence of community structure, with cohesive

clusters forming around shared types and limited interaction across groups. The model

thus offers a microfoundation for modular social networks shaped by homophily and

strategic behavior.

8 Conclusion

This paper studies the strategic formation of networks under the constraint of anonymity,

meaning individuals do not distinguish between potential partners. This seemingly small

change fundamentally shifts the nature of network creation, moving away from deter-

ministic, identity-based links to a world where random network structures emerge from

strategic choices. A core contribution of our work is demonstrating how strategic deci-

sions under anonymity can lead to specific kinds of random networks. Instead of being

a purely mechanical phenomenon, we show that network randomness arises naturally in

certain settings through strategic choices about socialization.

Our analysis has unveiled how network structure changes dramatically depending

on the cost of forming links. At low link costs, agents naturally form denser, highly

connected networks. Intermediate costs lead to networks that are sparser but still have

small-world properties, with nodes in the graph within close range to each other on
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average. In contrast, for high link costs, we observed two qualitatively different equilibria:

a “low-degree” scenario resulting in networks that are tree-like with large diameters and a

“high-degree” scenario where nodes link to a number of other nodes that is approximately

the square root of the population size. The analysis reveals a crucial duality where the

underlying features of networks diverge significantly depending on equilibrium. We also

note that our strategic approach shares regime change points with the classical pure

strategy literature in large populations. Mixed-degree strategies within the model can

be understood as representing an agent’s ”socialization effort,” which can have real-world

interpretations for those contexts where individuals invest effort to be more social (see,

e.g. Cabrales et al. 2011).

Furthermore, our study explored the efficiency of these networks, revealing a key

tension between equilibrium choices and collectively optimal outcomes. We find that in

all cost regimes, equilibrium connectedness differs from the efficient one. This highlights

a gap where there could be scope for interventions to increase the social benefit produced

by the network.

This research opens several new avenues for further exploration. We provide results

for the two-way flow model, but we expect that the qualitative results regarding the

emergence of random networks and the strategic underpinnings of those results will

likely hold under a one-way flow model as well, since the underlying social mechanism in

which players derive a social benefit from being connected to other agents remains the

same. Another important direction is exploring anonymous models where agents face

random edge costs. For example, agents could face costs that are independently drawn

from some specified distribution. These costs would allow for interim heterogeneity and

introduce a new layer of stochasticity in the network formation process. Exploring these

avenues will provide a deeper understanding of the interplay between random social

networks, link costs, and strategic individual behavior.
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A Concavity

In this section, we prove the concavity properties of u(·;x). As the following result shows,

ui is submodular in agent i’s action si.

Lemma 1. For any profile s−i and T, T ′ ∈ 2N\i,

ui(s−i, T ) + ui(s−i, T
′) ≥ ui(s−i, T ∩ T ′) + ui(s−i, T ∪ T ′).

Moreover, if dg(s−i,T∩T ′)(i, j) ̸= max(dg(s−i,T )(i, j), dg(s−i,T ′)(i, j)) for some j, then this

inequality is strict.

Proof. Let j ∈ N \ i. For convenience of notation, we will take dg(i, j) = ∞ if j /∈ Ni(g)

and b(∞) = 0. Since a path from i to j occurs in g(s−i, T ∪ T ′) if and only if it appears

in either g(s−i, T ) or g(s−i, T
′),

dg(s−i,T∪T ′)(i, j) = min{dg(s−i,T )(i, j), dg(s−i,T ′)(i, j)},

and since a path from i to j occurs in g(s−i, T ∪ T ′) if and only if it appears in both

g(s−i, T ) and g(s−i, T
′),

dg(s−i,T∩T ′)(i, j) ≥ max{dg(s−i,T )(i, j), dg(s−i,T ′)(i, j)}.

Hence,

b(dg(s−i,T∪T ′)(i, j)) + b(dg(s−i,T∩T ′)(i, j)) ≤ b(min{dg(s−i,T )(i, j), dg(s−i,T ′)(i, j)})

+ b(max{dg(s−i,T )(i, j), dg(s−i,T ′)(i, j)})

= b(dg(s−i,T )(i, j)) + b(dg(s−i,T ′)(i, j)).

Summing over j, it follows that

Bi(g(s−i, T ∩ T ′)) +Bi(g(s−i, T ∪ T ′)) ≤ Bi(g(s−i, T )) +Bi(g(s−i, T
′)).

Hence,

ui(s−i, T ) + ui(s−i, T
′) = Bi(g(s−i, T )) +Bi(g(s−i, T

′))− c · (|T |+ |T ′|)

≥ Bi(g(s−i, T ∩ T ′)) +Bi(g(s−i, T ∪ T ′))− c · (|T ∩ T ′|+ |T ∪ T ′|)

= ui(s−i, T ∩ T ′) + ui(s−i, T ∪ T ′).
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This implies that an agent’s utility for degree strategies is always weakly concave,

and also provides some conditions under which the utility is strictly concave.

Proposition 4. For any mixed strategy profile x−i and any 0 ≤ k < n− 2,

ui(x−i, k + 2)− ui(x−i, k + 1) ≤ ui(x−i, k + 1)− ui(x−i, k).

Moreover, if x−i is an anonymous strategy profile and there is some 0 < m < n− 2 such

that for all j ̸= i,m in the support of xj, then this inequality is strict for 0 ≤ k ≤ n−m−2.

Proof. Let π be a uniformly randomly drawn permutation ofN\i, and let T = {π1, . . . , πk+1}

and T ′ = {π1, . . . , πk, πk+2}. Then by Lemma 1 for any s−i,

2ui(s−i, k + 1) = Eπ[ui(s−i, T )] + Eπ[ui(s−i, T
′)]

≥ Eπ[ui(s−i, T ∩ T ′)] + Eπ[ui(s−i, T ∪ T ′)]

= ui(s−i, k) + ui(s−i, k + 2).

Hence,

ui(x−i, k + 2)− ui(x−i, k + 1) = Es−i∼x−i
[ui(s−i, k + 2)− ui(s−i, k + 1)]

≤ Es−i∼x−i
[ui(s−i, k + 1)− ui(s−i, k)]

= ui(x−i, k + 1)− ui(x−i, k).

It follows immediately that if there is some s−i in the support of x−i and some T and

T ′ such that

ui(s−i, T ) + ui(s−i, T
′) > ui(s−i, T ∩ T ′) + ui(s−i, T ∪ T ′),

then this inequality is strict. We prove the last claim by showing that if the condition

holds, then there are always such s−i, T , and T ′.

For convenience, take i = n. Consider first the case m > 1. For 1 ≤ j ≤ m,

let sj = {1, . . . ,m + 1} \ j, and for m + 1 ≤ j ≤ n − 1, let sj = {1, . . . ,m}. Let

T = {1} ∪ {m + 1, . . . ,m + k} and T ′ = {2} ∪ {m + 1, . . . ,m + k}. Since |sj| = m for

j ̸= n, s−n is in the support of x−n. Moreover,

dg(s−n,T )(n, n− 1) = dg(s−n,T ′)(n, n− 1) = 2
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and

dg(s−n,T∩T ′)(n, n− 1) = 3.

Hence, strict inequality follows from Lemma 1.

Now, ifm = 1, let sj = {j+1} for j ∈ {1, . . . , n−5}∪{n−3, n−2}, and let sn−4 = {1}

and sn−1 = {n− 3}. Let T = {1, . . . , k} ∪ {n− 3} and T ′ = {1, . . . , k} ∪ {n− 2}. Then

|sj| = 1 for j ̸= n, so s−n is in the support of x−n,

dg(s−n,T )(n, n− 1) = dg(s−n,T ′)(n, n− 1) = 2

and

dg(s−n,T∩T ′)(n, n− 1) = ∞,

and so the result again follows from Lemma 1.

Proposition 1 follows easily from Proposition 4.

Proof of Proposition 1. Concavity follows immediately from the first part of Proposi-

tion 4. If x has full support, then strict concavity follows from the second part of

Proposition 4 by taking m = 1.

25



B Equilibrium characterization

In this section, we prove that every symmetric anonymous equilibrium must be one of

the three types identified in Section 3.

Proposition 5. If x corresponds to a symmetric anonymous equilibrium, then x is either

mixed-degree, all-or-nothing, or more-than-half.

We will use the following result, which states that the maximizers of u(·;x) must be

an interval. This is a straightforward implication of concavity.

Lemma 2. For any anonymous strategy x there exist k and k̄ such that k ∈ argmaxu(·;x)

if and only if k ≤ k ≤ k̄.

Proof. Let k = min argmaxu(·;x) and k̄ = max argmaxu(·;x). If k = k̄, then the claim

is immediate, so assume k < k̄, and suppose towards a contradiction that the claim does

not hold. Then there is some k < k < k̄ such that u(k + 1;x) > u(k;x). But then by

Proposition 1, u(i+ 1;x)− u(i;x) is decreasing in i, so

u(k + 1;x)− u(k;x) =
k∑

i=k

u(i+ 1;x)− u(i;x) ≥
k∑

i=k

u(k + 1;x)− u(k;x) > 0,

and hence u(k + 1;x) > u(k;x) = maxu(·;x), contradiction.

Proof of Proposition 5. Let x be an anonymous strategy which corresponds to a symmet-

ric equilibrium. Suppose first that 0 andm are in the support of x for some 1 ≤ m < n−1.

Then by Proposition 4, u(·;x) is strictly concave at 1, so

u(2;x)− u(1;x) < u(1;x)− u(0;x) ≤ 0,

and so u(2;x) < u(1;x) ≤ u(0;x). By Lemma 2, it follows that Supp(x) ⊆ {0, 1}. Thus,

if x is not all-or-nothing and contains 0 in its support, then x must be mixed-degree.

Next, suppose that 0 is not in the support of x, and let m = minSupp(x). If

m ≥ (n − 1)/2, then x is more-than-half, so assume m < (n − 1)/2. By Proposition 4,

u(·;x) is strictly concave at m+ 1, so

u(m+ 2;x) < 2 · u(m+ 1;x)− u(m;x) ≤ u(m;x).

Hence, by Lemma 2, Supp(x) ⊆ {m,m+ 1}, so x is mixed-degree.
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C Non-mixed-degree equilibria

In this section, we provide proofs for the characterization of all-or-nothing and more-

than-half equilibria.

C.1 All-or-nothing

As we will show, when all other agents are playing the all-or-nothing strategy which

mixes between degree strategies n− 1 and 0 with probability p and 1− p, respectively,

the marginal benefit of making an additional link is

α(p) = (1− p) · [b(1)− (1− (1− p)n−2) · b(2)].

In an all-or-nothing equilibrium, this marginal benefit must be offset by the marginal cost

of an additional link, and as the following result shows, this turns out to be essentially

necessary and sufficient.

Proposition 6. For any c and b, there is a unique all-or-nothing strategy x which

corresponds to a symmetric anonymous equilibrium. If c ≥ b(1), then x is the degree

strategy 0 (i.e. the trivial equilibrium). If c < b(1), then x assigns nonzero probability

p∗ to the degree strategy n− 1, where α(p∗) = c.

Proof. x corresponds to a symmetric anonymous equilibrium if and only if 0 and n− 1

maximize u(·;x), so by Lemma 2, x corresponds to a symmetric anonymous equilibrium

if and only if u(·;x) is constant.

Let p be the probability that x assigns to n− 1. If all agents apart from, say, agent

n use the strategy x and agent n uses the strategy sn = T , then the benefit agent n gets

from agent i is b(1) if i ∈ T or |si| = n − 1, b(2) if i /∈ T , |si| = 0, and |sj| = n − 1 for

some j ̸= i, and 0 otherwise, so

E[un(s−i, T )] = (|T |+ p · (n− 1− |T |)) · b(1)

+ (n− 1− |T |) · [(1− p) · (1− (1− p)n−2)] · b(2)− |T | · c

= (α(p)− c) · |T |+ (b(1)− α(p)) · (n− 1)

and thus

u(k;x) = (α(p)− c) · k + (n− 1) · α(p).
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Hence, u(·;x) is constant if and only if α(p) = c.

Now, since α(p) is a product of strictly decreasing functions, α(p) is strictly decreasing

on [0, 1]. Since α(0) = b(1) and α(1) = 0, this has a unique (and nonzero) solution if

c < b(1). If c ≥ b(1), this has no nonzero solution, and in this case the degree strategy

0 corresponds to a symmetric anonymous equilibrium, since 0 maximizes u(k; 0) = k ·

(b(1)− c).

C.2 More-than-half

Proposition 7. A more-than-half strategy x which is not mixed-degree corresponds to

a symmetric anonymous equilibrium if and only if the expected out-degree under x is

(1− c
b(1)−b(2)

) · (n− 1).

Proof. Denote by pk the probability of choosing the degree strategy k under x and by

k̃ =
∑

k pk · k the expected out-degree. By the pigeonhole principle, if agent n uses a

degree strategy k ≥ (n−1)/2 when all other agents use the strategy x, then the distance

to any other agent is at most two, so the benefit agent n gets from agent i is b(1) if i ∈ sn

or n ∈ si and b(2) otherwise. Note that

P[n /∈ si] =
∑
k

P[|si| = k] · P[n /∈ si | |si| = k] =
∑
k

pk · (1−
k

n− 1
) = 1− k̃

n− 1
,

so

u(k;x) = (n− 1) · (b(1) + (1− k

n− 1
) · (1− k̃

n− 1
) · (b(2)− b(1)))− k · c

= u(n− 1;x) + (1− k

n− 1
) · (b(1)− b(2)) ·

[
k̃ − (1− c

b(1)− b(2)
) · (n− 1)

]
.

Suppose first that k̃ = (1− c
b(1)−b(2)

)·(n−1). Then u(·;x) is constant for k ≥ (n−1)/2.

Furthermore, since u(n−1;x) ≥ u(n−2;x), by Proposition 1, u(·;x) is increasing. Hence,

k maximizes u(·;x) for all k ≥ (n − 1)/2, so x corresponds to a symmetric anonymous

equilibrium.

Now, suppose that x corresponds to a symmetric anonymous equilibrium. If k̃ ̸=

(1− c
b(1)−b(2)

) · (n− 1), then u(·;x) is either strictly increasing or strictly decreasing, so

x must be either the degree strategy ⌈(n − 1)/2⌉ or n − 1. But by assumption this is

impossible, since x is not mixed-degree.
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D Mixed-degree cost correspondence

For this section, fix b. Recall that E(c, n) is the set of κ ∈ [0, n− 1] such if there are n

agents and the cost is c, then the symmetric anonymous strategy profile where all agents

play the mixed-degree strategy κ is an equilibrium.

Denote by b(k;κ) the expected benefit of playing the degree strategy k when all

other agents play the mixed-degree strategy κ. Note that b(k;κ)is continuous in κ. For

κ ∈ [0, n− 1] \ {0, . . . , n− 1}, define

C(κ) = b(⌈κ⌉;κ)− b(⌊κ⌋;κ).

For k ∈ {1, . . . , n− 2}, denote C(k−) = limκ→k− C(κ) and C(k+) = limκ→k+ C(κ).

Proposition 8. Let κ ∈ [0, n − 1], c ≥ 0. Then κ ∈ E(c, n) if and only if one of the

following holds:

• κ /∈ {0, . . . , n− 1} and c = C(κ)

• κ ∈ {1, . . . , n− 2} and C(κ+) ≤ c ≤ C(κ−)

• κ = 0 and c ≥ b(1)

• κ = n− 1 and c = 0

Proof. If κ /∈ {0, . . . , n − 1}, let k = ⌊κ⌋. Then κ ∈ E(c, n) if and only if k, k +

1 ∈ argmaxu(·;κ). By Proposition 1, u(·;κ) is concave, so this holds if and only if

u(k;κ) = u(k + 1;κ). Since

u(k + 1;κ)− u(k;κ) = [b(k + 1;κ)− (k + 1) · c]− [b(k;κ)− k · c] = C(κ)− c,

this holds if and only if c = C(κ).

If κ ∈ {1, . . . , n− 2}, then by Proposition 1, u(·; k) is concave, so k ∈ E(c, n) if and

only if k ∈ argmaxu(·; k) if and only if u(k; k) ≥ max(u(k − 1; k), u(k + 1; k)). Now,

u(k + 1; k)− u(k; k) = b(k + 1; k)− b(k; k)− c = C(k+)− c

and

u(k; k)− u(k − 1; k) = b(k; k)− b(k − 1; k)− c = C(k−)− c,
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so this holds if and only if C(k+)− c ≤ 0 and C(k−)− c ≥ 0.

If κ = 0, then u(k; 0) = k · (b(1)− c), so 0 ∈ argmaxu(·; 0) if and only if c ≥ b(1).

If κ = n− 1, then u(k;n− 1) = (n− 1) · b(1)− k · c, so n− 1 ∈ argmaxu(·;n− 1) if

and only if c = 0.

We use the next result for proving existence of mixed-degree equilibria.

Lemma 3. Let κ1, κ2 ∈ [0, n − 1] with κ1 < κ2 and let c1, c2 ≥ 0. If κ1 ∈ E(c1, n)

and κ2 ∈ E(c2, n), then for every c with min(c1, c2) ≤ c ≤ max(c1, c2) there is a κ with

κ1 ≤ κ ≤ κ2 such that κ ∈ E(c, n).

Proof. If κ1 ∈ E(c, n) or κ2 ∈ E(c, n), then the result is immediate, so assume this is

not the case. Suppose first that that c1 < c2. Since κ1, κ2 /∈ E(c, n),

lim
k̃→κ+

1

C(κ̃) < c < lim
k̃→κ−

2

C(κ̃).

Let

κ = sup{κ̃ ∈ (κ1, κ2) \ {0, . . . , n− 1} : C(κ̃) < c}.

Observe that κ < κ2, since

lim
κ̃→κ−

C(κ̃) ≤ c < c2 ≤ lim
κ̃→κ−

2

C(κ̃).

Hence, limκ̃→κ− C(κ̃) ≥ c, since otherwise limκ̃→κ+ C(κ̃) < c, contradicting the definition

of κ. It follows that limκ̃→κ− C(κ̃) = c, so κ ∈ E(c, n).

An analogous argument shows that if c1 > c2 and

κ = sup{κ̃ ∈ (κ1, κ2) \ {0, . . . , n− 1} : C(κ̃) > c},

then κ ∈ E(c, n).

30



E Proof of Theorem 1

Throughout this section, we prove Theorem 1 using the results established in the pre-

vious Appendices. To begin, the following result establishes the existence of nontrivial

equilibria for large n.

Claim 3. For any c > 0 and sufficiently large n, there exists a κ >
√
n such that

κ ∈ E(c, n).

Proof. By Lemma 3, it is sufficient to show that for all large enough n, there are κ1, κ2 >
√
n such that C(κ1) > c and C(κ2) < c, since this implies that there is some κ >

√
n

such that κ ∈ E(c, n). By Proposition 8, n− 1 ∈ E(0, n), so we may take κ2 = n− 1.

Now, let α, β as in Lemma 5. Then for all sufficiently large n,

C(
√
n
+
) = lim

κ→
√
n
+
C(κ) ≥ α · e−β ·

√
n > c.

In particular, there exists some κ1 >
√
n with C(κ1) > c.

Now, by Proposition 5, every symmetric anonymous equilibrium is either mixed-

degree, all-or-nothing, or more-than-half. By Proposition 6, for any c there is a unique all-

or-nothing symmetric anonymous equilibrium, which is nontrivial if c < b(1) and trivial

otherwise. By Proposition 7, a more-than-half strategy corresponds to a symmetric

anonymous equilibrium if and only if the expected out-degree is (1− c
b(1)−b(2)

) · (n− 1).

Parts (b) and (c) of Theorem 1 follow immediately from these results. The following

result shows that part (a) also follows from these results.

Claim 4. If c ≥ b(1), there is no non-mixed-degree symmetric anonymous equilibrium.

Proof. Since c ≥ b(1), the only all-or-nothing symmetric anonymous equilibrium is for

all agents to choose k = 0, which is mixed-degree. Moreover, (1− c
b(1)−b(2)

) · (n− 1) < 0,

so there is no more-than-half strategy with this expected degree.
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F Proof of Theorem 2

Throughout this section, we prove Theorem 2, making use of the results established in

the previous Appendices, as well as several bounds which we provide proofs for in the

next Appendix.

F.1 Low cost regime

For part (a), we make use of the following result.

Lemma 4. Let κ ∈ [0, n− 1] \ {0, . . . , n− 1}. Then

C(κ) ≥
(
1− κ

n− 1

)
· (b(1)− b(2)).

Moreover, if κ > 10, then

C(κ) ≤
(
1− κ

n− 1

)
· (b(1)− b(2)) + n3 · e−

1
2

κ2

n .

Claim 5. Suppose c < b(1)− b(2), and let κn ∈ E(c, n) for each n. Then

lim
n→∞

κn

n
= 1− c

b(1)− b(2)
·

Proof. Let ρ = 1− c
b(1)−b(2)

. If κ < ρ · (n− 1), then by Lemma 4,

C(κ) >

(
1− ρ · (n− 1)

n− 1

)
· (b(1)− b(2)) = c,

so κn > ρ · (n− 1).

Now, fix ε > 0. For all sufficiently large n, if κ > (1 + ε) · ρ · (n− 1), then κ > 10, so

by Lemma 4,

C(κ) ≤
(
1− (1 + ε) · ρ · (n− 1)

n− 1

)
· (b(1)− b(2)) + n3 · e−

1
2

((1+ε)·ρ·(n−1))2

n

= c− ε · ρ · (b(1)− b(2)) + n3 · e−
1
2

((1+ε)·ρ·(n−1))2

n

< c,

so κn ≤ (1 + ε) · ρ · (n− 1).

32



F.2 Intermediate cost regime

For part (b), we will need the following bounds.

Lemma 5. There are α, β > 0 such that if n > 100, 2 < κ < 1
5
n, and κ ∈ E(c, n), then

c ≥ α · e−β κ2

n · κ.

Lemma 6. For κ ∈ [0, n− 1] \ {0, . . . , n− 1},

C(κ) ≥
(
1− log n

n− 1

)
· (b(1)− b

(⌊
log log n

log 2(κ+ 1)

⌋)
)

Claim 6. Suppose c ∈ (b(1)− b(2), b(1)), and let κn ∈ E(c, n) for each n. Then

lim
n→∞

log(κn)

log(n)
=

1

2
·

Proof. Let α, β as in Lemma 5, and fix some integer K > c
αe−β . Then for all sufficiently

large n, if K < κ <
√
n and κ ∈ E(c′, n), then

c′ > α · e−β ·K > c,

so either κn ≤ K or κn ≥
√
n. Moreover, by Lemma 6, for n sufficiently large, if κ ≤ K

and κ ∈ E(c′, n), then

c′ ≥ inf
κ∈[0,K]\{0,...,n−1}

C(κ) ≥
(
1− log n

n− 1

)
· (b(1)− b

(⌊
log log n

log 2(κ+ 1)

⌋)
) > c,

so κn ≥
√
n. Finally, by Lemma 4, for any ε > 0, if n is sufficiently large and κ > n

1
2
+ε,

then

C(κ) < b(1)− b(2) + n3e−
1
2
n2ε

< c,

so κn ≤ n
1
2
+ε.

Now, fixing ε ∈ (0, 1
2
), it follows that κn > n

1
2
−ε for all sufficiently large n. By

Lemma 5, for large n and κ ∈ [n
1
2
−ε,

√
n], if κ ∈ E(c, n), then c ≥ α · e−β · n 1

2
−ε >

b(1)− b(2), so κn >
√
n.

F.3 High cost regime

For every n, choose cn such that
√
n ∈ E(cn, n). By Proposition 8 and Lemma 5, for all

sufficiently large n,

cn ≥ C(
√
n
+
) ≥ α · e−β ·

√
n > c.
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Moreover, by Proposition 8, 0 ∈ E(b(1), n) and n − 1 ∈ E(0, n). Thus, by Theorem 3,

there are κ, κ′ ∈ E(c, n) with κ <
√
n and κ′ >

√
n.

By Lemma 5, if n > 100 and κn is a low-degree equilibrium with κn > 2, then

κn ≤ c
α·e−β . Hence, if (κn) is a sequence of low-degree equilibria, then κn ≤ max(2, c

α·e−β )

for all n > 100, so (κn) is bounded. The asymptotic characterization of high-degree

equilibria is a straightforward application of Lemma 4.

Claim 7. If c > b(1) and κn ∈ E(c, n) is a high-degree equilibrium for every sufficiently

large n, then

lim
n→∞

log(kn)

log(n)
=

1

2
·

Proof. By Lemma 4, for any ε > 0, if n is sufficiently large and κ > n
1
2
+ε, then

C(κ) < b(1)− b(2) + n3e−
1
2
n2ε

< c.

Hence, for all sufficiently large n,
√
n < κn ≤ n

1
2
+ε.
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G Proofs of bounds

We will make use of the following bound several times.

Lemma 7. Let κ ∈ [0, n− 1] \ {0, . . . , n− 1}. If all agents apart from n use the strategy

κ and agent n uses the strategy k = ⌊κ⌋, then

P[dG(n, 1) < M ] ≤ (2(κ+ 1))M

n− 1
·

Proof. The distance from n to 1 is less than M if and only if there is a path of length m

from n to 1 for some m < M . Let n = v0, v1, . . . , vm−1, vm = 1 be a sequence of distinct

vertices, and for 0 ≤ i < m − 1, let Ei be the event that vi ∈ svi+1
or vi+1 ∈ svi . Then

this is a path in G if and only all of the Ei occur. Now, P[E0] ≤ 2 k+1
n−1

and for i > 0,

P[Ei | Ej for j < i] = P[Ei | Ei−1] ≤ 2
k + 1

n− 1
,

so the probability that this is a path in G is bounded above by
(
2 k+1
n−1

)m
. Hence, by the

union bound, the probability that there is a path of length m from n to 1 is at most

(n−1)m−1 ·
(
2 k+1
n−1

)m
= 1

n−1
· (2(k+1))m, so the probability that there is a path of length

less than M from n to 1 is at most

M−1∑
m=0

1

n− 1
· (2(k + 1))m =

1

n− 1
· (2(k + 1))M − 1

(2(k + 1))− 1
≤ (2(κ+ 1))M

n− 1
·

Proof of Lemma 4. Let k = ⌊κ⌋, and let T = {1, . . . , k} and T ′ = {1, . . . , k + 1}. Then

assuming all agents other than n use the strategy κ,

C(κ) = E[bn(s−n, T
′)− bn(s−n, T )].

Let G = g(s−n, T ), and let D be the event that dG(i, j) ≤ 2 for all i, j. If dG(n, k+1) ≥ 2,

then the benefit to adding a link to k + 1 is at least b(1)− b(2), so

bn(s−n, T
′)− bn(s−n, T ) ≥ 1(dG(n, k + 1) ≥ 2) · (b(1)− b(2)).

On the other hand, the benefit is at most nb(1), and if D holds, then the benefit is

b(1)− b(2) if dG(n, k + 1) = 2 and 0 otherwise, so

bn(s−n, T
′)− bn(s−n, T ) ≤ 1(dG(n, k + 1) ≥ 2, D) · (b(1)− b(2)) + 1(¬D) · nb(1)

≤ 1(dG(n, k + 1) ≥ 2) · (b(1)− b(2)) + 1(¬D) · n.
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Hence,

P[dG(n, k + 1) ≥ 2] · (b(1)− b(2)) ≤ C(κ) ≤ P[dG(n, k + 1) ≥ 2] · (b(1)− b(2)) + P[¬D] · n.

Since k + 1 /∈ T ,

P[dG(n, k + 1) ≥ 2] = P[n /∈ sk+1] = 1− κ

n− 1
,

so

C(κ) ≥
(
1− κ

n− 1

)
· (b(1)− b(2)).

Now, if D does not hold, then there are some i, j such that dG(i, j) > 2. This is only

possible if {i, j} ̸⊆ sm for all m ̸= i, j, so

P[dG(i, j) > 2] ≤ P[{i, j} ̸⊆ sm for all m ̸= i, j] ≤
(
1− k · (k − 1)

(n− 1) · (n− 2)

)n−2

.

If κ > 10, then k·(k−1)
(n−1)

> 1
2
κ2

n
, so the last term is bounded by e−

1
2

κ2

n , and hence by the

union bound, P[¬D] ≤ n2 · e− 1
2

κ2

n . Thus,

C(κ) ≤
(
1− κ

n− 1

)
· (b(1)− b(2)) + n3 · e−

1
2

κ2

n .

Proof of Lemma 5. Assume first that κ /∈ {0, . . . , n− 1}. Let s−1 be drawn according to

the strategy profile where all agents aside from 1 use the mixed-degree strategy κ, and

let s1 be drawn according to agent 1 using the degree strategy k = ⌊κ⌋. Observe that

b(k + 1;κ) − b(k;κ) is equal to the expected increased benefit from agent 1 adding one

more link uniformly at random. Observe that if for some agent m, dĝ(s)(1,m) > 2, then

the probability that agent 1’s benefit with respect to m increases by at least b(2)− b(3)

is at least k
n−1

, since m has at least k neighbors. Hence,

b(k + 1;κ)− b(k;κ) ≥
n∑

i=2

P[dĝ(s)(1, i) > 2] · k

n− 1
· (b(2)− b(3))

= (b(2)− b(3)) · P[dĝ(s)(1,m) > 2] · k.

The result will follow from a lower bound on the probability that agents 1 and m are

distance more than two apart. Let A be the event that 1 /∈ sm, m /∈ s1, and s1 ∩ sm = ∅,

and let B be the event that
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• ∀i ∈ s1, m /∈ si,

• ∀i ∈ sm, 1 /∈ si, and

• ∀i /∈ s1 ∪ sm ∪ {1,m}, {1,m} ̸⊆ si.

Agents 1 and m are distance more than two apart if and only if both A and B occur.

Since P[1 /∈ sm] ≥ 1− k+1
n−1

, P[m /∈ s1] ≥ 1− k+1
n−1

, and

P[s1 ∩ sm = ∅ | sm, 1 /∈ sm,m /∈ s1] =

(
n−1−(|sm|+1)

k

)(
n−1
k

) ≥
(
1− 2(k + 1)

n− 1

)k+2

,

we have

P[A] ≥
(
1− 2(k + 1)

n− 1

)2(k+1)

and thus

P[A] ≥ e−8
(k+1)2

n−1 ,

where the last inequality follows from the fact that 1− x ≥ e−2x for 0 ≤ x ≤ 1
2
.

Now, for i ∈ s1, P[m /∈ si | A] ≥ 1 − k+1
n−1

, for i ∈ sm, P[1 /∈ si | A] ≥ 1 − k+1
n−1

, and

for i /∈ s1 ∪ sm ∪ {1,m}, P[{1,m} ̸⊆ si | A] ≥ 1 −
(
k+1
n−1

)2
. Since these events are all

independent conditional on A,

P[B | A, s1, sm] >
(
1− k + 1

n− 1

)|s1|

·
(
1− k + 1

n− 1

)|sm|

·

(
1−

(
k + 1

n− 1

)2
)n−(|s1|+|sm|+2)

>

(
1− k + 1

n− 1

)2(k+1)

·

(
1−

(
k + 1

n− 1

)2
)n−1

,

so

P[B | A] > e−4
(k+1)2

n−1 · e−2
(k+1)2

n−1 = e−6
(k+1)2

n−1 .

Thus,

P[dĝ(s)(1,m) > 2] = P[A] · P[B | A] ≥ e−14
(k+1)2

n−1 ,

so

C(κ) = b(k + 1;κ)− b(k;κ) ≥ (b(2)− b(3)) · e−14
(k+1)2

n−1 · k.
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Since (k+1)2

n−1
≤ 8 · κ2

n
and k ≥ 1

2
κ, taking α = b(2)−b(3)

2
and β = 112 gives the result.

Finally, if κ = k ∈ {0, . . . , n− 1}, observe that

c

α · e−β· k2
n · k

≥ C(k+)

α · e−β· k2
n · k

= lim
κ→k+

C(κ)

α · e−β·κ2
n · κ

≥ 1.

Proof of Lemma 6. Let k = ⌊κ⌋, and let G be the random graph when agent n uses the

degree strategy k and all other agents use the strategy κ. For any M ∈ Z>0, the expected

benefit with respect to agent i for agent n of adding an additional link is bounded below

by

1

n− 1
· P[dG(n, i) ≥ M ] · (b(1)− b(M)).

Summing over i, agent n’s expected benefit from an additional edge is bounded below

by P[dG(n, 1) ≥ M ] · (b(1)− b(M)), and by Lemma 7, P[dG(n, 1) ≥ M ] ≤ 1− (2(κ+1))M

n−1
.

Taking M =
⌊

log logn
log 2(κ+1)

⌋
, it follows that

P[dG(n, 1) < M ] ≤ log n

n− 1
·

H Proof of Proposition 2

Proof of Proposition 2. Consider the first assertion. Consider any sequence of anony-

mous strategies {xn}n of the network formation games with n agents such that the

profile (xn, . . . , xn) achieves Wn. Let yn be the expected fraction of agents that is cho-

sen by any agent according to xn. In other words, yn equals 1
n−1

times the expected

outdegree of any agent. We claim that

Wn ≤
(
n

2

)(
2b(1)(1− (1− yn)

2) + 2b(2)(1− yn)
2 − c[2yn(1− yn) + 2y2n]

)
(1)

To understand equation (1) consider a pair of distinct agents i, j out of the n agents. The

probability that the realized network includes the realized edge {i, j} equals 1−(1−yn)
2.

If the edge is realized, then the benefit of i and j from its existence is 2b(1). Therefore

2b(1)(1− (1− yn)
2) represents the expected welfare from the existence of the edge {i, j}.

The term 2b(2)(1− yn)
2 represents an upper bound for the utility b(dG(i, j)) of i and j
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conditional on the absence of the edge {i, j}. Since this is true for any pair {i, j}, the

term
(
n
2

)(
2b(1)(1 − (1 − yn)

2) + 2b(2)(1 − yn)
2
)
bounds the positive expected welfare

from the realized network.

Similarly c[2yn(1− yn) + 2y2n] is the negative utility {i, j} receives from the existence

of the edge {i, j}. With probability 2yn(1− yn) only one of the agents pays for the edge,

where with probability y2n both of the agents pay for the edge. Thus we have shown that

equation (1) bounds Wn from above.

Applying F.O.C with respect to yn the maximum of the expression in (1) is obtained

when yn = 1 − c
2(b(1)−b(2))

. We next claim that this utility is achievable by choosing

kn = (1 − c
2(b(1)−b(2))

)n. To see this note that the only term that we bound from above

in (1) rather than calculating the exact expectation is the term
(
n
2

)
2b(2)(1 − yn)

2. We

implicitly assume that if agents {i, j} are not directly connected, then there exists another

agent k such that both i and j are connected to k. Since the degree kn = (1− c
2(b(1)−b(2))

)n

this property indeed holds with probability one as we have shown in the proof of Theorem

2.

The optimal asymptotic welfare is thus obtained by letting yn = 1 − c
2(b(1)−b(2))

and

the optimal welfare is thus by (1) becomes(
n

2

)(
2b(1)− 2c+

b(2)c2 − b(1)c2 − 3c3

2(b(1)− b(2))2
+

2c2

(b(1)− b(2))

)
This yields a constant fraction of

(
n
2

)(
2b(1) − c

)
which is the optimal social welfare in

the pure case.

We next consider the second assertion. Note that the expected number of agents i

with degree n − 1 is log(n). In addition. The probability that at least one agent with

degree n approaches 1 − 1
n
when n grows. Therefore for large values of n the expected

social welfare from the aforementioned strategy can be bound from below using the

following expression:

2(n− 1)b(1) + (n− 2)(n− 1)b(2)− log(n)nc

To see this consider the case where there are m “stars.” I.e., m agents with degree n−1.

The welfare in this case is bounded from below by

(m+ 1)(n− 1)b(1) + (n−m)(n−m− 1)b(2)−m(n− 1)c.
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The first expression bounds from below the welfare that is achieved by a direct links

from the agents. The second expression represents the indirect utility of the entire n−m

agents from each other. The last expression represents the cost. Note that m = 1

minimizes the first two expressions and therefore the welfare can be bound by

2(n− 1)b(1) + (n− 1)(n− 2)b(2)−m(n− 1)c.

Since the expectation of m is log(n) we have reached the desired bound.

Note that the welfare in the case m = 1 which is the optimal welfare in the pure case

is:

2(n− 1)b(1) + (n− 1)(n− 2)b(2)− (n− 1)c.

We clearly have that

lim
n→∞

2(n− 1)b(1) + (n− 1)(n− 2)b(2)− (n− 1)c

2(n− 1)b(1) + (n− 2)(n− 1)b(2)− log(n)nc
= 1.

This demonstrates that the proposed strategy extracts the full welfare asymptotically.

I Proof of Proposition 3

Proof of Proposition 3. The fact that limn→∞
kin,n
n

= 1 − c
b(1)−b(2)

follows exactly as in

the proof of Theorem 2.

We first claim that kout,n grows sublinearly, that is, lim supn
kout,n

n
= 0. To see this,

assume by way of contradiction that kout,n grows linearly along some equilibrium subse-

quence, then there exists a constant β > 0 such that agent i forms a link with agent j

with probability at least β for any two agents i and j, and all sufficiently large n. This

implies that the probability that i lies within distance 2 of j goes to 1 for any pair i, j,

regardless of i’s strategy. To see this, note that any node k ̸= i, j is connected to both

with probability at least 1 − (1 − β)2 for all sufficiently large n. Since these events are

independent across k, it follows that with probability approaching 1, there exists such

an agent k. In such a case, it follows from c > b(1) that deviating and playing kout,n = 0

is profitable for player i for all sufficiently large n. A contradiction.

Next, given that kout,n grows sublinearly, we try to estimate the marginal benefit

πk
n of a given agent i from having k = o(n) edges to any other homophily group for

sufficiently large n. Let β = 1− c
b(1)−b(2)

.
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Fix any agent j in a different community from i. Observe that if there at least one

agent j′ in the same community as j such that i links to j′ and j′ links to j, then the

distance from i to j is at most two, and this occurs with probability at least 1− (1−β)k.

Moreover, if i links to some j′ that is within distance two of j, then the distance from i

to j is at most three, and this occurs with probability close to 1. Since the probability

that agents i and j are directly linked is close to 0, it follows that the expected utility i

gets from j is approximately

(1− (1− β)k)b(2) + (1− β)kb(3).

Thus, the marginal expected benefit from all agent in j’s community if agent i chooses

k + 1 instead of k edges is approximately

∆(k) = n(1− β)k(b(2)− b(3))β.

Therefore, for kn = o(log(n)) we have that the marginal benefit from adding an edge

is arbitrarily large as n goes to infinity. To see this, define λ := − ln(1 − β) > 0. Since

(1− β)k = exp
(
k ln(1− β)

)
= exp(−λk), we conclude

∆(k) = nβ
(
b(2)− b(3)

)
exp(−λk).

Hence the marginal benefit of adding another edge diverges whenever kn = o(log n). This

implies that the support of the out group strategy contains only points k = O(log(n)).

Assume the sequence k = kn satisfies kn = ω(log n); that is,
kn

log n
−−−→
n→∞

∞. Write

kn = αn log n with αn → ∞. Then

∆(kn) = nβ
(
b(2)− b(3)

)
exp
(
−λαn log n

)
= β

(
b(2)− b(3)

)
n 1−λαn .

Because αn → ∞ we have 1− λαn → −∞, hence n1−λαn → 0. Therefore

∆(kn) −−−→
n→∞

0 whenever kn = ω(log n).

For this reason, we must have that the support of the out-group degree contains only

points k = Θ(log(n)) as desired.
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